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Abstract 
 

The Anomalous Environment Recorder (AE Recorder) provides a robust data 
recording capability for multiple high-shock applications including earth penetrators.  
The AE Recorder, packaged as a 2.4” diameter cylinder 3” tall, acquires 12 
accelerometer, 2 auxiliary, and 6 discrete signal channels at 250k samples / second.  
Recording depth is 213 seconds plus 75ms of pre-trigger data.  The mechanical, 
electrical, and firmware are described as well as support electronics designed for the 
first use of the recorder. 
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NOMENCLATURE 
3AMP 3-Axis MilliPen penetrator data recorder, 4 channel, 75ksps, 218-msec record 
3AMP Interim Replaced 3AMP sunset components, 6 channel, 75ksps, 581-msec record 
3DDR-AM 3-Axis DTRA Data Recorder – Advanced Miniaturization 
ADC Analog-to-Digital Converter 
CMRR Common-Mode Rejection Ratio 
CTE Coefficients of Thermal Expansion 
DAC Digital-to-Analog Converter 
DOE Department of Energy 
DTRA Defense Threat Reduction Agency 
GMB glass micro-balloon, a fill material for epoxy encapsulation 
HiCapPen High-Capacity Penetrator data recorder, 19 channel, 150ksps, 100-sec record 
ksps kilo-samples per second 
MFB Multiple Feedback 
PGA Programmable Gain Amplifier 
SMPC Switch-Mode Power Converter 
SNL Sandia National Laboratories 
SPI Serial-Programmable Interface 
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INTRODUCTION 
The Anomalous Environment Recorder (AE Recorder) provides a robust data recording 
capability for high-shock applications such as earth penetrator instrumentation and impact 
testing.  The expanded-capability, high-fidelity AE Recorder acquires 12 accelerometer, 2 
auxiliary, and 6 discrete signal channels at 250k samples / second with more than 213 seconds 
recording depth, plus 75ms of pre-trigger data.  The small, 2.4” diameter design is also compact 
enough to support sub-scale penetrator tests including fuze development. 
 
A challenge designing on-board instrumentation for the B61-12 anomalous environment test 
series was addressing operational safety.  Following the 2008 sled track accident 1 (1) (2), sled 
track tests at Sandia involving on-board instrumentation were essentially eliminated because 
energy necessary for operating instrumentation could inadvertently fire energetic devices.  
Restarting instrumented sled test operations required reconsideration of all test processes, with 
additional analysis and mitigation.   

              
Figure 1.  AE Recorder Cut-Away 
 
Design Requirements 
Requirements for the AE Recorder were negotiated with the impact test customer.  Each of the 
12 accelerometer channels has electronically programmable gain and balance.  The remaining 
two analog channels measure the internal capattery voltage and external battery voltage, which 
are useful for validating data and planning future tests.  Although no channels are specifically 
dedicated for use as a check, or dummy, channel, customers are strongly urged to allocate a 
channel for this purpose to allow verification that the data collected were not corrupted by the 
instrumentation itself (see the discussion in section Why a Check Channel Is Important).  Using a 
check channel is very important because the system is intended for use in new regimes beyond 
current levels of impact shock where instrumentation capabilities are also unproven.  The 
performance of the AE Recorder as implemented is summarized in Table 1 below.   

                                                 
1 During preparation for a rocket sled track event on 9 October 2008, there was an unexpected ignition of the Zuni 
rocket motor. Three Sandia staff and a contractor were involved in the accident; the contractor was seriously 
injured and made full recovery. The data recorder battery energized the low energy initiator in the rocket. 

2.35” 
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Table 1.  AE Recorder Features 
User Channels:  
Accelerometer Channels: 12  
Housekeeping: 2 – Battery Voltage, Capattery Voltage 
Discrete (Bi-Level) 8 – Trigger Fiducial, Sync, and 6 comparator 
Sample rate: 250k samples per second per channel 
Anti-alias low-pass filter: 7-pole Butterworth, 50kHz bandwidth 
Recording Time: 213 seconds maximum with 75ms pre-trigger 
Gain, reprogrammable: 6 to 320, steps of 6.25 x (1 .. 128) 
Balance, reprogrammable: 0 to 5V 
  
Trigger Configuration  
Trigger channel: Any analog or bi-level channel 
Trigger window: Programmable 0 to 100% of channel range 
Trigger qualification width: Programmable 1 to 255 samples (3.4ms) 
Trigger modes: Internal trigger channel, Computer trigger  
Arm modes: Computer Arm, Delay Arm, Arm on Power 
Arm delay time: 0 to 1023 minutes 
  
Power and Control  
Supply voltage: 16V maximum, 6V minimum 
Supply current: Low-power (delay arm): 25mA @ 16V;  

Full-power: 150mA @ 16V 
Internal capattery: 16V, 120mF providing 5-sec nominal power 
Baud rate: 115.2k Baud command, 150Mbps SerDes data 
  
Environmental and 
Mechanical  

 

Operational shock: More than 20,000 G 
Temperature: -20°C to 70°C 
Data recorder weight: 1.4 pounds 
Materials: PH 13-8 Mo Stainless Steel 
Encapsulation: 828/DEA/GMB with procedure SS2A0780 
Data recorder dimensions: 2.35” diameter, 3.0” tall 

 
Other requirements are internal stored energy that allows the recorder to operate after external 
power is lost; the ability to self-monitor the impact environment once the recorder is armed, and 
then self-trigger; signal processing of accelerometer signals with a low-pass filter; and obviously 
for a memory-based system the need to survive impact and retain the data collected for later 
retrieval.  Although not required for the initial application, a stand-alone operating capability 
facilitates gun-launched tests so that only an external battery is needed, and leads to broader 
applicability of the AE Recorder for other high-shock measurement applications. 
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Design Implementation Summary 
The internal stored energy requirement is fulfilled using a special robust component called a 
double-layer capacitor or capattery, which can supply power for 5 seconds following battery 
loss.  During the 3DDR-AM development on which the AE Recorder was based, we investigated 
concerns of mechanical reliability for this component with laboratory tests plus modeling and 
simulation (3).  Data are stored in two types of non-volatile memory, so do not require keep-alive 
power post-test to hold information.   
 
Self-triggering when in an armed mode is especially useful for gun-launched penetrator tests.  
Any single or multiple analog or discrete channel can be configured as the recording trigger.  
The recorder is normally configured to trigger on any significant acceleration change, so for gun 
tests the acceleration impulse is also be recorded, so that the complete launch-to-impact profile is 
captured.  Self-triggering also minimizes external wiring since the recorder can be left in arm 
mode for hours while waiting for trigger, with the time limited only by battery life. 
 
Because accelerometers are the most common sensor used with shock-hardened recorders like 
the AE Recorder, signal processing is a necessity for removing high-frequency signal 
components.  No real-world filter has a “brick wall” abrupt filter characteristic, so the corner 
frequency must be selected to consider both the sample rate and realistic filter characteristics.  
Even at the high 250k samples per second offered by the AE Recorder, aliasing will result unless 
a low-pass filter attenuates the contribution of frequencies beginning at about 50 kHz.   
 
In addition to their wide output bandwidth, another characteristic of piezoresistive 
accelerometers is non-zero offset that varies with the device and the same device over 
temperature.  For this reason, the AE Recorder includes a field-adjustable offset adjustment.  
Even with the signal balanced when the unit is first armed and while waiting for trigger, 
temperature changes will result in a signal shift of unpredictable magnitude and direction.  The 
AE Recorder includes a patented algorithm for continually adjusting the trigger threshold to 
compensate. (4)   
 
Field-programmable gain allows adjusting the signal range of interest to meet the expected 
sensor output.  The settings are in convenient binary increments:  1, 2, 4 ... 128 times the base 
gain.  The initial version of the AE Recorder used a 1.25 base gain, and the second version used 
6.25.  This range covers nominal outputs for sensors appropriately selected for the expected 
impact environment. 
 
The threshold for the six user discrete signal inputs is also adjustable in the field from near zero 
to nearly 3V.  Two additional discrete signals are internal and use TTL-level thresholds:  Trigger 
which marks detection of the trigger fiducial, and Synchronization which is intended to capture a 
common signal applied to a group of recorders that allows later alignment of the recorded data 
post-test. 
 
An important concern in a recorder design with a Gigabyte of memory is time to extract the data.  
This was addressed on the AE Recorder by developing a high-speed, serial interface based on the 
SerDes (Serializer-Deserializer) electronic device.  The 150Mbps rate enables data extraction at 
about the same speed it is recorded.  A second low-speed interface at 115.2k Baud permits 
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recorder configuration and can be used for data extraction.  We developed special fielding 
interface hardware to encompass both interface types in a simple, USB-connected interface. 
 

 
Figure 2.  Block Diagram of the Anomalous Environment Data Recorder 
 
The electronics design block diagram, as shown in Figure 2, was segmented into three circuit 
board types, resulting in 5 circuit boards in the AE Recorder housing because the analog / signal 
conditioning board is used three times with four channels each.  The “Interface” and “Energy 
Store & Power Conversion” blocks are implemented as one circuit board, 3A6999-002 Power / 
Interface.  A switch-mode power converter on this board reduces the capattery voltage to 6V for 
distribution to all other boards.  The “Comparators” and “Signal Conditioning” blocks, 
implemented on the 3A7000-002 Analog board, accept external signals and condition them for 
digitization on the 3A6998-002 Digital board.  The Digital board implements the “Control Logic 
and Memory” block, with logic in the Actel Smart Fusion gate array directing the output from 
the two, 6-channel Analog-to-Digital Converter chips using into either the 75 millisecond deep 
FRAM non-volatile circular buffer or the 210-second deep NAND Flash.  The “Serial 
Connection” interface for configuration, command, and high-speed data extraction is also 
implemented on the Digital board.  The concept of microcontroller-plus-FPGA logic was first 
employed in HiCapPen (5), but improved here with the use of a single device combining 
microcontroller and logic functions.   
 
Auxiliary Equipment for Fielding 
Although the AE Recorder forms the data acquisition system core, varying levels of other 
support electronics are needed to complete the instrumentation depending on the application.  
This auxiliary equipment can be as simple as a battery for a gun-launched test, but the other 
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extreme is a sled track test with electrical isolation that requires fiber-optic communication and 
internal battery power with a built-in battery management system.   
 
Fiber-Optic Communication and Control 
For the B61 sled track test, the AE Recorder on-board instrumentation uses a multi-mode fiber-
optic connection to control power on and exchange data.  At the sled track facility, single-mode 
fiber from the track control room runs more than a mile to a track-side box near the test article.  
At that location, the single-mode fiber is converted to multi-mode for connection to the test 
article using an assembly of commercial fiber media converter modules.  The multi-mode fiber 
runs as far as 1000 feet from this point to a fiber junction box near the test article.  The last 20 
feet of fiber from that junction is terminated in a multi-fiber connector, which finally connects to 
the test article. 
 
Using multi-mode fiber on the test article was a practical adaptation to the extremely dusty 
outdoor environment of sled track operations, where dust particle size approximates the fiber 
diameter of single-mode fiber.  On board the test article, multi-mode fibers are used to drive 
photo-diodes to turn system power on, and transceivers to exchange command and configuration 
data.  After qualifying the turn-on signal, the 3A7002-003 External Fiber-Optic Interface Board 
latches power and waits for commands.  The microprocessor monitors both receive channels, and 
if the primary channel fails the input is switched to the secondary input fiber.  The selected serial 
stream is applied to all the recorders, which then select messages based on address.  The fiber-
optic transmit always sends on both fibers simultaneously.  
 
On-Board Instrumentation Power Source 
In addition to the fiber interface, the 3A7002-003 External Fiber-Optic Interface Board contains 
switch-mode power converters to reduce the 36.5V maximum LiFePO4 battery voltage to 16V 
for distribution to the AE Recorder modules, and another SMPC to step down the 16V to 5V for 
use by the fiber optics and microprocessor.  Each AE Recorder module draws about 150mA at 
16V with accelerometers connected.  The 3A7002 board, and the 3A7004 Battery Management 
System board which receives 5V power from the 3A7002 board, draw about 50mA at 16V.  
Total current for the four AE Recorder modules and support equipment is then about 650mA at 
16V.  The SMPC producing 16V output from the 32V nominal battery voltage is about 80% 
efficient, so draws less than 0.5A from the battery which is composed of 10 each K2 Energy 
LFP26650P80 cells, 2.6A-Hr nominal.  Thus, a fully-charged battery should operate the system 
for about 5 hours.  During non-operational time, the battery management system is set to Sleep 
mode which draws about 0.1mA, equivalent to less than 5% self-discharge after one month. 
 
An internal, rechargeable battery seemed the best design choice for providing instrumentation 
power.  Using an externally-attached battery is not feasible when explosives safety is considered 
because a battery provides energy compatible with explosive initiators.  With the internal battery, 
mitigation was needed to ensure the battery remained isolated from electrical conductors 
penetrating the test article’s metal surface.  Following the first sled test, an alternative was raised 
that applied external, remotely-controlled power just before launch to a large, internal capacitor 
bank.  This idea was evaluated but not pursued due to time and funding constraints.   
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Once established that an internal battery would be used, it seemed prudent to use a rechargeable 
battery.  Although the internal battery could have been a primary (non-rechargeable) battery, 
on-board instrumentation assembly and check-out can use varying and unpredictable amounts of 
power.  Time between test article assembly and the actual test date could also be several months.  
Partial disassembly of the test article to replace an internal, isolated battery was unacceptable.  
Thus, a secondary (rechargeable) battery was selected using LiFePO4 chemistry.  The very low 
self-discharge rate from LiFePO4 and the associated battery management system should allow 
recharging after test article assembly and check-out is complete and no further servicing for 
several months, however, since the recharging capability is readily available, the battery is 
topped off on the day of test.   
 
Electrical Connections for Test Article Status and Battery Charge 
Finally, 3A7001-002 Safe-State Monitor interface panel contains electrical connections to 
monitor and service the battery, LED indicators that instrumentation power was active, and a 
location from which to distribute flashing “Blink” LEDs to correlate test article movements 
captured on camera with the AE Recorder data.  The electrical connections are in a socket-type 
circular military connector covered by a metal dust cap to ensure no exposure of electrical 
conductors. 
 
The same circular military connector is used on the 4A1390 Test Article Interface Box, which 
provides a break-out connections for the test object’s circular connector signals that are used for 
voltage verification, isolation tests, and battery charging.  The box is disconnected from the test 
article before launch.  The box also provides a laptop computer-to-fiber optic connection to the 
test article.  The test object’s fiber-optic connector is located away from the interface panel.  The 
user interface software loaded on the test track console room computer is installed on the laptop, 
which along with the interface box, translates fiber-optic controls for use during test article 
assembly and check out.   
 
One more item is helpful for procedure development and practice using the sled track 
configuration.  A 4A1396 Test Article Stand-In enables test track personnel to develop and 
thoroughly practice procedures.  It contains copies of the same circuit boards used in the real on-
board instrumentation, so reacts identically to the test article.  It is designed to interface using the 
4A1390 Test Article Interface Box. 
 
Why a Check Channel Is Important 
All electronic components have varying degrees of piezoelectric response, but in the AE 
Recorder design this is practically limited to ceramic capacitors constructed of ferroelectric 
dielectrics such as X7R.  Research during the HiCapPen development (5) provided design 
guidance that only C0G-type ceramic or tantalum capacitors should be used in the analog 
amplification and signal conditioning circuits.  Common mode noise injection may also occur 
outside the analog signal chain from sensor excitation and analog circuit supply voltages.  For 
the bridge-type piezoresistive accelerometers, common-mode rejection is a function of the bridge 
quiescent imbalance and the bridge resistance itself, driven by noise on the excitation voltage.   
 
Unanticipated piezoelectric problems can occur in spite of this understanding of the phenomena 
and using correct design principles.  For this reason, users are strongly encouraged to dedicate 
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some channels to check channels, also called dummy channels.  When piezoelectric 
contamination occurs, it is correlated with the expected acceleration measurements.  The data 
output plot in Figure 3 was taken from a gas gun launch pulse on an old development system 
called AdPen-NV.  This check channel had a dummy accelerometer input, but the output clearly 
was not zero.  Because the contamination is correlated with the intended acceleration, common 
validation methods that integrate the acceleration measurement to produce velocity and 
displacement data fail to detect the corruption.   
 

 
Figure 3.  AdPen-NV Check Channel Showing Piezoelectric Data Contamination 
 
Project Costs and Duration 
When the AE Recorder project was first funded 20 November 2014, a $910k development cost 
was estimated.  Requirements discovery early in the project revealed the additional requirement 
to electrically isolate the instrumentation from anything contacting or outside the test article.  
The subsequent design and implementation of an electrically isolated fiber-optic system to 
control the test article from the sled track control room cost by itself $445k.  Additional 
incidental development affected the schedule and cost as well, such as design changes and 
engineering work-arounds in response to Critical Design Review action items late in the 
development.  When the system was delivered December 2015, costs totaled $1.7M, with $1.4M 
labor and $250k purchases. 
 
Following the completely successful March 2016 sled track test, the customer requested 
additional units but with design modifications.  Minor changes affected nearly all the previously 
designed circuit boards.  Improvements in this build also included a stand-in test article with 
greater similarity to the actual unit, more robust electrical connections for verifying isolation of 
the instrumentation, and support hardware to simplify test article assembly and check-out.  
Acknowledging that incremental costs are lower to build two sets of instrumentation now instead 
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of delaying that acquisition, we built two sets of on-board instrumentation to support the 
upcoming sled track test plus a subsequent test.  The $641k project funding early June 2016 was 
anticipated to provide delivery November 2016. 

MECHANICAL DESIGN 
Sandia has developed earth penetrator instrumentation since 1974.  In the beginning, the large, 
6” diameter mechanical packages reflected the electronic technology at the time, with Dual-
Inline-Package (DIP) integrated circuits and very low levels of device integration.  The first 
microprocessor-controlled penetrator instrumentation, AdPen, was developed in 1996.  Higher 
levels of device integration and smaller component packaging resulted in a merely 3” diameter 
recorder about 9” long with the first appearance of a rectangular notch in the steel cylinder 
supporting the electronics.  This same concept appeared in all subsequent penetrator 
instrumentation designs and is successful because of its mechanical strength and relatively 
simple electronics assembly process. 
 

 
Figure 4.  AE Recorder Assembly before Encapsulation 
 
Development of the AE Recorder housing relied heavily on mechanical modeling and 
simulation.  Design trade-offs within the mechanical constraints led to parsing the electronic 
design into five circuit boards of three types: Digital, Power/Interface, and three copies of the 
Analog board.  The Digital and Power/Interface boards required the most area, and consequently 
they were located near the cylinder center.  Board widths included sufficient space to 
accommodate routing connecting wires over the board edges and yet leave sufficient 
encapsulation depth, as shown in Figure 4.  A benefit of the unconstrained, stirrup housing is that 
it allows the epoxy-based encapsulant to relax during the curing process and relocate maximum 
principal stresses away from the electronics. 
 
Harnesses from an MDM-31P and MDM-15S on top and MDM-15P on bottom route to through-
hole connections on the boards.  The plug-type connectors service the Analog boards, with 15 
wires allocated to each board.  This means the MDM-15P harness on the bottom only connects to 
Analog Board 1, while wires are bifurcated from the MDM-31P to Analog 2 and Analog 3.  
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About half the MDM-15S harness goes to each of the Digital and Power / Interface boards, with 
all serial communication to the Digital board and power and discrete control to the Power / 
Interface board. 
 
The boards are mounted within the assembly using ten 3/16” length, #2-56 nylon standoffs to 
mechanically suspend the boards within the housing.  Two removable panels on top and bottom 
of the recorder allow the boards to be assembled independent of the housing; once assembly is 
complete, the electronics are inserted into the housing and mounted in place.  While this feature 
successfully prevents technicians from having to build a “ship in a bottle”, this is by no means an 
easy product to assemble.  Future revisions, if pursued, should focus on manufacturing 
improvements.  At the very least, pre-cut and formed ribbon wires or flex cables should be 
designed to reduce the number of individual wire routes in the assembly.   
 
For the B61-12 sled track application, each recorder was housed in steel sleeve to protect the 
exposed windows of the recorder.  However, the top of the recorder (i.e., the side with two 
connectors), was still exposed.  As a result, an aluminum cap was bolted to the top of the 
recorder as an added measure of protection for the connectors2 (see Figure 5).  Two small 
notches in the top of the housing of the recorder (also visible in Figure 5) can be used to remove 
the recorder from an upper level assembly such as a penetrator.  Full details on the mechanical 
design can be found in the assembly drawing: 3A5279D01. 
 

 
Figure 5. AE Recorder with Cap Installed. 
 
Mechanical Modeling & Simulation 
Science-based engineering that includes modeling and simulation increases the likelihood that a 
design is robust.  A mechanical model is developed during negotiation with other team members 
and evaluated for flaws.  This first stage establishes the physical interfaces to which the assembly 
will join, and the constraints from the electronic designer’s objectives.  Once the model has 
matured to a suitable point, the model’s stress profile over the entire life cycle is then captured 
using a Multi-Stage FEA procedure.  This is often an iterative process, where the mechanical 
                                                 
2 Examination of the recorder hardware after the sled track test indicated that debris did indeed hit the top of the 
recorders.  While some of the connectors were damaged, the cap did prevent direct impact to the potted 
electronics.  
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model is evaluated and tweaked until the final solution is determined.  Although all real-world 
effects cannot be anticipated or modeled, this approach greatly improves performance during the 
product’s life cycle.  
 
Modeling and simulation was particularly important to the AE Recorder development because 
the recorder will be subjected to both harsh thermal and dynamic environments.  While gun-
launch and impact profiles for earth penetrator tests are known to some extent, the impact during 
a sled test was conjecture with many assumptions.  
 
An important consideration for encapsulated systems is residual stresses from the encapsulation 
curing process.  The elevated, 70°C curing temperature leaves thermally-induced stresses when 
materials with disparate coefficients of thermal expansion are used.  Residual manufacturing 
stresses may significantly reduce material failure strength margins. 
 
Another aspect is pre-loading.  All gun-launched penetrator systems apply compressive loads of 
up to 5000 pounds to the instrumentation package when building the test article.  This pre-load is 
intended to overcome compression applied to the recorder body on target impact, and avoids 
“chattering” of the steel surfaces that affect data quality and damage accelerometers. 
 
Simulating both the residual stresses and pre-load are accomplished with Implicit Quasi-Static, 
Sierra S/M: Adagio.  The simulation run shows stresses as the object is cooled from 
encapsulation cure temperature down to the lowest operational temperature (in the case of the 
sled track, -20°C).  Stress is assumed to be zero at the elevated cure temperature.  The model is 
simplified by removing all electronic components from the boards except the large capattery.  
Then, the simulation applies the compressive pre-load to the AE Recorder’s chamfered mounting 
surfaces. 
 
Finally, the anticipated impact acceleration is simulated using Explicit Dynamic, Sierra S/M: 
Presto at the lowest operating temperature.  As before, the forces are applied to the model’s 
chamfered surfaces. 
 
In summary, the FEA procedure is listed below: 
 

1. Cool from potting cure temperature of 70C, to lowest operational temperature of -20°C 
(Quasi-static, S/M: Adagio) 

2. Apply 5000 lb. preload to chamfers (Quasi-static, S/M: Adagio) 
3. At -20°C, accelerate using chamfered load surfaces with 25kG, 0.5ms haversine pulse 

(Dynamic, S/M Presto) 

The mesh of the finite element model is shown in Figure 6.  The mesh contains 811,132 Hex8 
Elements with an average size of 0.020”.  Half symmetry was used to reduce computation 
time/cost.  As previously mentioned, individual electrical components were not modeled.   
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Figure 6.  AE Recorder finite element model mesh. 
 
The housing material was modeled using an elastic-plastic power law hardening model for PH 
13-8 Mo stainless steel in the H950 condition.  The shell of the capattery was modeled using a 
thermo-elastic plastic power law hardening model for 304L stainless steel.  The power law 
parameters for both of these materials can be found in Table 2, and the temperature dependent 
functions for the 304L can be found in Table 3.  The 828/DEA/GMB potting material was 
modeled using the simplified potential energy clock model with parameters defined in Reference 
(6).  Likewise, the stiffness matrix used to determine input parameters for the 3D orthotropic 
elastic model of the FR-4 material can be found in Reference (6).  The elastomeric material used 
to model the “guts” of the capattery were assumed to be the following: G = 0.26MPa, K = 
10MPa, CTEtransverse = 31 ppm/C and CTEnormal = 84 ppm/C. 
 
Table 2.  Elastic Plastic Power Law Hardening Model Parameters for 304L and PH 13-8 Mo 
Stainless Steels. 

Parameter  PH 13‐8 Mo  304L 

Density (kg/m^3)  7800  7920 

Young’s Modulus (Pa)  175E+9  194.5E+9 

Poisson’s Ratio  0.264  0.264 

Yield Stress (Pa)  800E+6  206.8E+6 

Hardening Constant (Pa)  1.0E+9  0.86464E+9 

Hardening Exponent  0.1  0.53574 

Luder’s Strain  0.0  0.0 

Beta  1.0  1.0 
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Table 3:  Temperature Dependent Functions for Thermo-Elastic Plastic Power Law 
Hardening Model for 304L Stainless. 
Temperature 

(K) 
Thermal Strain 

function 
Young’s 
Function 

Poisson’s 
Function 

Yield Function 

218  ‐0.001264  1.003  0.9697  1.1667 

293  0.0  1.0  1.0  1.0 

373  0.001348  0.97766  1.0303  0.8233 

473  0.003107  0.9464  1.0606  0.69 

573  0.004934  0.9085  1.0909  0.6 

673  0.006840  0.8656  1.1174  0.53 

773  0.008832  0.8177  1.1439  0.47 

873  0.010846  0.7667  1.1704  0.42 
 
The FEA results for the housing are listed in Table 4.  A contour plot of Von Mises stress in the 
housing at 25kG peak acceleration is shown in Figure 7.  The maximum stress in the housing is 
seen at the corners of the windows.  The peak Von Mises stress at -20°C and with the 5000 lb. 
preload is 657 MPa, which gives a safety factor of 2.15 to the yield stress of the housing material 
(PH 13-8 Mo, H950).  At 25kG (and at -20°C with 5000 lb. preload), the maximum Von Mises 
stress in the housing increases to 849 MPa, and correspondingly reduces the safety factor to 1.67. 
With these boundary condition assumptions, the housing is not expected to yield. 
  

Table 4: FEA Results for AE Recorder Housing. 
State Max Von Mises Safety Factor* 

-20C with 5000 lb. Preload 657 MPa (95.3 ksi) 2.15 
During 25kG, 0.5ms Pulse 849 MPa (126 ksi) 1.67 

* Safety Factor based on minimum yield strength of PH 13-8 Mo in condition H950 – 1415 MPa (205 ksi), per 
ASTM A564. 
 

 
Figure 7.  Housing Von Mises Stress State at 25kG Peak 
(Full Symmetry Shown. 
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The FEA results for the potting are listed in Table 5.  A contour plot of the maximum principal 
stress in the potting at 25kG peak acceleration is shown in Figure 8.  The peak maximum 
principal stress in the potting is seen at the corners of the windows where the potting interfaces 
with the housing.  The peak maximum principal stress at -20°C and with the 5000 lb. preload is 
53 MPa, which gives a safety factor of 1.32 to the yield stress at room temperature of the potting 
material (828/DEA/GMB).  At 25kG the peak maximum principal stress in the potting increases 
to 68 MPa, and correspondingly reduces the safety factor to 1.03. While the peak stress is high 
and may indicate that adhesive failure will occur at the interface of the housing and the potting in 
the corner of the window, this location is away from the electronics and is not expected to affect 
the performance of the recorder.  In fact, the stress state near the electronics is very low. 
 

Table 5: FEA Results for AE Recorder 828/DEA/GMB Potting. 
State Max, Max Principal Stress Safety Factor* 

-20C with 5000 lb. Preload 53 MPa (7.69 ksi) 1.32 
During 25kG, 0.5ms Pulse 68 MPa (9.86 ksi) 1.03 

* Safety Factor based on yield strength of 828/DEA/GMB – 70 MPa (10 ksi). 
 

 
Figure 8.  828/DEA/GMB Potting Maximum Principal Stress State at 25kG Peak 
(Half symmetry shown.) 
 
One item of interest is the capattery housing.  The equivalent plastic strain of the capattery 
housing at -20C with the 5000 lb. preload applied is shown in Figure 9.  As shown, the housing 
walls permanently deform outward due to the shrinkage in the potting material as the assembly 
cools from the elevated cure temperature down to the lowest operational temperature.  During 
the 25kG peak, the equivalent plastic strain increases slightly from 0.04% to 0.05%.  While these 
strains do not indicate that the housing itself is going to fail, the housing is expected to maintain 
electrical contact with the capattery core during operation, and therefore these plastic strains 
could cause the capattery to fail open.  This same issue has been observed in other recorder 
designs (3DDR-AM and 3AMP); the solution has been to order special capatteries from AVX 
that contain conductive epoxy between the capattery core and the housing.  For more information 
see Reference (3). 
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Figure 9.  Capattery Housing Equivalent Plastic Strain at -20C with 5000 lb. Preload (Half 
symmetry shown at 10x displacement magnification.) 
 
In conclusion, the FEA of the AE Recorder does not reveal any significant mechanical design 
flaws.  The analysis was conservative in that it was performed at the lowest operational 
temperature and included loads and boundary conditions to account for the entire lifecycle of the 
product.  The results illustrate the importance of including the manufacturing process in the 
analysis, as the residual stresses due to the cure schedule account for a significant portion of the 
final stress state in the AE Recorder.   
 
Encapsulation 
Research that modeled encapsulation systems over temperature and during shock revealed 
weaknesses in our formerly standard polysulfide rubber conformal coat / Hysol approach (6).  
Essentially, the conformal coat was ineffective in reducing thermally-induced stresses created 
during the 70°C epoxy cure cycle, and was dropped completely.  The AE Recorder encapsulant 
scheme uses 828/DEA/GMB, plus component underfill using 828/D230, filled with 20% by 
volume alumina.  The formulation for 828/DEA/GMB is diglycidyl ether of bisphenol A (Epon 
828, Resolution Chemicals) cured with 12 PHR diethanolamine (DEA, Fisher Scientific) and 
filled with 48% by volume of Glass Micro-Balloons (D32/4500, 3M Corp.), cured at 70°C.  PHR 
is an abbreviation for parts per hundred resin, a ratio by weight.  The glass transition temperature 
Tg for 828/DEA/GMB is 81.4 ±1.6°C.  The Glass Micro-Balloons part of the formulation helps 
to block crack propagation and improve the coefficient of thermal expansion for the material.  
Component underfill using 20% alumina-filled 828/D230 leads to higher fatigue life (7).  A 
high-velocity penetrator test series into hardened targets of the 3AMP penetrator data recorder 
demonstrated the robustness of the encapsulation scheme. 
 
Following underfill of all components using 20% alumina-filled 828/D230, we follow the 
neutron generator encapsulation procedure SS2A0780.  The 828/DEA/GMB is very viscous and 
prone to voids.  To compensate for this, the process uses an evacuation step typical of any 
encapsulation process, but then adds curing under 80psi pressure.  The pressure pot, which can 
hold at most two AE Recorder mold fixtures, is placed in an oven with the following temperature 
profile: 

1. Hold the molds at 25°C ± 10°C for 2 hours minimum and 24 hours maximum.  
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2. Raise the temperature linearly to 50°C ±6°C in 2 hours ±30 minutes. 
3. Hold the cure temperature at 50°C ±6°C for 12 hours ±30 minutes. 
4. Raise the temperature linearly to 71°C ±6°C in 5 hours ±30 minutes. 
5. Hold the cure temperature at 71°C ±6°C for 5 hours ±30 minutes. 
6. Ramp down to 25°C ±10°C in 30 minutes minimum and 24 hours maximum. 

Pressure is held until after the pressure pot is returned to room temperature in the last step. 
 
The mold fixture consists of two aluminum pieces that clamp together to hold the AE recorder 
module (see Figure 10).  The mold is filled with epoxy using the two sprue holes in the top of the 
mold.  At the completion of the cure process, the mold is separated using threaded holes and 
screws to “jack” the two halves of the mold apart.  Any excess potting from the sprue holes is 
removed by turning the AE Recorder module on the lathe.  The final encapsulated product can be 
seen in Figure 11, and more details about the mold itself can be found in the mechanical 
drawing: 3A5740D01. 
 

 
Figure 10.  AE Recorder Mold Fixture Assembly. 
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Figure 11.  Encapsulated AE Recorder Modules. 

ELECTRONICS DESIGN 
Instrumentation on board test vehicles captures measurements used to support modeling and 
simulation of the impact conditions.  Modelers wish for large number of channels and extremely 
high sample rates to support their analyses.  Increasing sample rates are driven by interest in 
isolating smaller, component-level interactions of the test article.  Instrumentation design for 
impact testing is a compromise among the number of channels, sample rates, power 
consumption, volume of the design, and survivability.   
 
In response to the functionality needs and the constraints of the mechanical packaging, the AE 
Recorder design was parsed into three board types: Energy Storage & Power Conversion Power / 
Interface board; Signal Conditioning Analog board; and Control, Digitization, and Memory 
Digital board.  The boards are linked with a common 6-wire bus containing 6V power and an 
I2C control interface.  Commands from the Digital board configure the Power / Interface and 
Analog boards. 
 
Energy Storage & Power Conversion 
The instrumentation must be self-contained, without dependence on facility power.  Batteries are 
the obvious choice for power but large capacitance could also be used with energy transferred 
before launch.  The AE Recorder uses both a battery and a capacitor.  High shock conditions at 
impact limit the reliance on batteries because they cannot survive impact conditions consistently 
even with shock-hardened packaging.  But a battery is a convenient mechanism for charging a 
robust, internal energy storage element.  For the shock-tolerant capacitor, the AE Recorder uses 
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an AVX BestCap capattery, also known as a double-layer capacitor or super-capacitor.  The 
capattery uses a rubber-like polymer loaded with electrolyte that allows formation of a double-
layer of ions.  Because the separation distance between the ion layers is so small, very large 
capacitance can be created in a relatively small volume.  The name capattery derives from the 
similarity to a battery with ion movement.  However, the difference is the battery has a chemical 
oxidation-reduction reaction to store energy, and the capattery does not.   
 

 
Figure 12.  Capattery Temperature Effects on ESR and Capacitance 
 
One important capattery characteristic is increased Equivalent Series Resistance (ESR) from 
0.16-Ohms typical and reduced capacitance with reduced temperature as shown in Figure 12.  At 
low temperature the increased series resistance produces a voltage drop when load is applied.  
This compounded problem of higher internal resistance and reduced capacitance is partially 
mitigated with switch-mode power conversion because the maximum energy is extracted from 
the capattery.  Batteries have a similar cold-temperature problem, so the AE Recorder cannot be 
used much below -20°C.   
 

 
Figure 13.  Opened Capattery Shell with the Core Visible 
 
The specific capattery in the AE Recorder design is the 16-V, 120-mF AVX BestCap 
BZ12GA124ZAB (8) shown in Figure 13 slightly disassembled to reveal the internal 
construction.  The spot-weld bonds on the metal shell have been broken and the bottom shell, 
polymer core, and top shell, respectively, are slid apart.  External dimensions of the shell are 
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approximately 1.9” X 1.16” X 0.33” and the device weighs about 24 grams.  This model 
provides a higher energy density configuration than the standard AVX models.  The design 
volume available limited the AE Recorder to a single capattery although multiple capattery units 
in parallel could improve reliability.  According to the manufacturer a capattery is very unlikely 
to fail shorted, but from experience on other designs a capattery can fail open.  This vulnerability 
is mitigated by a capattery special-ordered to use conductive epoxy between the core and the 
shell. 
 

 
Figure 14.  Top Level 3A6999-002 Power / Interface Board 
 
To maximize both the capattery energy extracted and the resulting recording time, a switch-mode 
power converter (SMPC) steps down the 16V capattery voltage to 6V for distribution among the 
circuit boards.  The Linear Technology LTM8031 ultra-low noise buck converter operates at 
about 85% efficiency with 16V input and 6V output.  In addition to extending operating time on 
the capattery, using a SMPC reduces heat dissipation by more than 50% down to 2.4W from 
5.4W if only linear regulators were used.  Minimizing power is also important for extending 
battery life, and the SMPC allows a doubling of battery operating time.  The hierarchical 
schematic top-level diagram for the 3A6999-002 Power / Interface board is shown in Figure 14.   
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Figure 15.  3A6999-002 Power / Interface Board, Front and Back 
 
The circuit board design as realized is shown in Figure 15.  The capattery interface in the upper 
left includes diodes to apply Vbat and Vext power sources and the current-limit circuit on the 
Vbat input to clamp capattery in-rush current.  All the external MDM-15 inputs have through-
hole mounting along the upper left corner.  The upper right quadrant contains the microcontroller 
and implements the “I2C_Iface” block in the top-level schematic from Figure 14.  The 
microcontroller qualifies the Power_On pulse, latching power only after the signal is present at 
least 1 second, and enabling the SMPC.  The lower third of the board contains the SMPC and 
filter capacitors.  Board interconnections are along the center, right edge of the board, labeled 
“Power & Control Connections” in Figure 14.  This bus is common to all five boards and 
includes the 6V power from the LTM8031 buck converter and the I2C control signals sent by the 
Smart Fusion microprocessor on the Digital board.  The microprocessor processes the I2C 
address to respond only when addressed.  
 
Each of the other board types include their own linear regulators to drop the 6V SMPC output 
that is bussed to all the boards to the voltages needed locally.  Low-dropout regulators are used, 
which is particularly important for the 5V circuit voltage on the signal conditioning board and 
the 5V ADC supply on the digital board.  For each of these linear regulators, we selected 
tantalum filter capacitors to minimize piezoelectric effects.  If standard X7R dielectric capacitors 
were used, glitches could appear on the supply voltages at impact that would corrupt the 
collected data. 
 
The 3A6999 board includes operational amplifiers to condition the Vbat and Vcap signals for 
measurement using the board’s own microcontroller and the 3A6998 Digital board’s FPGA.  
Measuring Vcap shows sufficient supply voltage was available to produce the 6V distributed to 
all the other boards and provides data validation.  The battery voltage is useful for capturing 
when the battery is lost during the test and can inform instrumentation decisions on future tests. 
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Inrush current charging the large capacitance of the capattery needs to be limited, so we used a 
circuit that controls the gate voltage on a MOSFET based upon voltage across a current-sense 
resistor.  Rather than tolerate the high voltage drop and accompanying power loss associated 
with driving the base-emitter voltage of a bipolar transistor with the sense resistor, we used a 
Zetek ZDS1009 (9) complementary current-mirror device to sense a much lower voltage across a 
smaller-value resistor as shown in Figure 16.  Because the current-sense resistor can be a much 
lower resistance, power dissipation is decreased and a physically smaller, lower power rating 
resistor can be used resulting in smaller circuit volume.  The permissible current is increased by 
decreasing the value of resistor R3.  Decreasing the sense resistor R2 value to increase the 
current limit, as done in the classic circuit approach, would also work but is less flexible. 
 

 
Figure 16.  In-Rush Current Limit as Implemented Using a Current Mirror Circuit 
 
The Microchip PIC24FJ64GB002 microcontroller has very limited functions on the board, 
primarily to validate that the Power_On pulse is at least 1 second before latching power to the 
capattery and then following an additional 8-second delay, to the Switch-Mode Power Converter.  
It also handles the I2C bus commands from the Digital board, with the 3A6999 Power /Interface 
board assigned address 0x10.  Op Codes are shown in Table 6.  Of particular importance is the 
Op Code to power the AE Recorder off. 
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Table 6.  Power / Interface Board Configuration Op Codes 
Op Code Bytes Function 
Write, 0xAC 1 Latch power on 
Write, 0x53 1 Unlatch power and turn system off  
Read, 0x23 1 Report board power on cycles  
Read, 0x25 1 Report number of times board has latched power  
Read, 0x29 1 Report Vcap, capattery voltage 
Read, 0x2B 1 Report Vbat, battery voltage 
Read, 0x2D 1 Report temperature from MPC9701 sensor 
 
Signal Conditioning 
The AE Recorder is designed primarily to capture accelerometer data, the dominant sensor used 
in impact tests.  Not all of an accelerometer’s high-frequency signal content is useful, so must be 
sufficiently attenuated at the sampling frequency by a low-pass filter to avoid aliasing.  Generic 
characteristics of ideal low-pass filter is shown in Figure 17.  Aliasing, in which a high-
frequency component appears as a lower-frequency signal, creates distortions not correctable 
with subsequent data processing.  Accelerometer output frequencies are so high that amplifier 
slew rate limitations will cause non-linear effects and distortion unless a passive RC-filter 
precedes the first amplification stage.  Because real-world filter implementations do not have 
abrupt cut-off frequency characteristics (the mythical “brick wall” filter profile), the gradual 
attenuation following the cut-off frequency must be accounted for in selecting the corner 
frequency and the sample rate.  Phase compensation was included in the AE Recorder filter to 
avoid time correlation problems. 
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Figure 17.  Generic 2-Pole Low-Pass Filter Characteristics 
 
Typical full-scale output from Endevco Model 7270A piezoresistive accelerometers (10) is 
+/-100mV when using a 5V excitation, and so requires at least 25V/V gain to match the +/-2.5V 
input of the Analog-to-Digital Converter.  Customers may use accelerometers that require higher 
gains, and for this the AE Recorder has a maximum practical 320V/V gain.  Because the filter 
circuit is implemented as inverting, the accelerometer is connected inverted with the positive 
Wheatstone bridge output tied to the inverting input of the instrumentation amplifier.  In addition 
to a passive RC filter ahead of the amplifier, the instrumentation amplifier also accommodates a 
wide source resistance from the sensor without affecting filter performance.  Model 7270A 
accelerometers present a 650 ±300 Ohm load to the amplifier, but other types are in the 6k-Ohm 
range. 
 
The Analog board’s top-level hierarchical schematic is shown in Figure 18.  The Microcontroller 
section parses I2C commands from the Digital board and sends SPI commands to the 
Programmable Gain devices and the Digital-to-Analog Converters.  It also can shut down the 
analog circuit linear regulator to minimize power in a Delay Arm mode.  The DACs generate the 
accelerometer balance voltages for each channel and the “fixed” 2.22V and 2.00V reference 
voltages needed to center the resulting analog signal around 2.5V for maximum ADC range. 
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Figure 18.  Top-Level 3A7000-002 Analog Board Schematic 
 
Instrumentation Amplifier and Programmable Amplifier 
Each channel includes a passive RC filter, instrumentation amplifier, programmable gain stage, 
and a filter section as shown in Figure 19.  The circuit implements a 7-pole Phase-Compensated 
Butterworth low-pass filter with a 50-kHz DC bandwidth and a -3dB point of 57 kHz.  The 
instrumentation amplifier’s very high input impedance supports insertion of a single, shunt-
capacitor pole preceding the first gain stage to attenuate high frequency signals that would 
otherwise introduce non-linearity due to slew rate limitations in the instrumentation amplifier 
(11; 12).  The Analog Devices AD8224 instrumentation amplifier has a gain fixed at board 
assembly time by Resistor R2.  For test Impact 1, the resistor was not installed so the first-stage 
gain was 1.  For Crush 1, a 12.4k resistor is in place, setting the first-stage gain to about 5.  The 
AD8224 common mode voltage maximum is the supply voltage minus 2.0V.  To maximize the 
input range, the raw 6V supply powers the AD8224.  Although the common mode range is not 
an issue for accelerometers, expanding the range increases flexibility in applying the AE 
Recorder to other sensors and inputs.  The 49.9-Ohm resistor shown on the signal conditioning 
output in Figure 19 is combined with a 100pF capacitor located on the Digital board before the 
Texas Instruments ADS7265 Analog-to-Digital Converter.  This 18 MHz pole is recommended 
in the ADS7265 data sheet to accommodate the minimum 80ns acquisition time Tacq for the 
device. 

Discrete

Discrete

Disc_A
Disc_B

Disc_A_Out
Disc_B_Out

VdscB_Ref
VdscA_Ref

Ch3_Vbal

Ch2_Vbal

Ch4_Vbal

Ch1_Vbal

V2-222Ref
V2-000Ref

V2-222Ref
V2-000Ref

V2-000Ref
V2-222Ref

V2-222Ref
V2-000Ref

Ch2_Vbal

Ch4_Vbal

Ch1_Vbal

Ch3_Vbal

Ref _SYNCn

6V_Power

6V_Power

6V_Power

6V_Power

Ref _SYNCn

V2-222Ref

VdscA_Ref

V2-000Ref

VOLTAGEREG

VoltageReg

Ch2_Vbal

Ch3_Vbal

Ch4_Vbal

Din
Clk Ch1_Vbal

5V_ShutD_n

Bal_SYNCn

6V_Power
V2-222Ref

V2-000Ref

VdscA_Ref

VdscB_Ref

Ref _SYNCn

MICROCONTROLLER

Microcontroller

Clk
Dout

Ch2_CSn
Ch3_CSn
Ch4_CSn

Ch1_CSn

5V_ShutD_n

I2C_SCL
I2C_SDA Bal_SYNCn
I2C_Req_n Ref _SYNCn

Clk
Din

VdscB_Ref

Din
Clk

Din
Clk

Din
Clk

Bal_SYNCn

6V_Power

5V_ShutD_n

Clk
Din

Ch2_CSn

Ch4_CSn
Din
Clk

Ch1_CSn

Ch3_CSn

5V_ShutD_n

Bal_SYNCn

6V_Power

I2C_SDA
I2C_SCL

Analog PCB
Connections

I2C_Req_n

6V_PowerPC1
1

6V_ReturnPC2
1

I2C_SCLPC3
1

I2C_SDAPC4
1

I2C_Req_nPC5
1

I2C_RtnPC6
1

Gnd
1

Analog02
1

Analog03
1

Analog04
1

Analog01
1

Bilev el01
1

Bilev el02
1

Power & Control
Connections

JN06Sen_P3

JN08Sen_P4

JN01Excit

JN04Sen_P2

JN12Dsc_N1

JN15Dsc_N2

JN02Sen_P1

JN11Cont_A
JN10Return

JN05Sen_N2

JN07Sen_N3

JN09Sen_N4

JN13Dsc_P1
JN14Dsc_P2

JN03Sen_N1

CHANNEL_2

Channel

sig-
sig+

out

Clk
Din
CSn

Vbal
V2-000Ref
V2-222Ref

6V_Power

CHANNEL_3

Channel

sig-
sig+

out

Clk
Din
CSn

Vbal
V2-000Ref
V2-222Ref

6V_Power

CHANNEL_4

Channel

sig-
sig+

out

Clk
Din
CSn

Vbal
V2-000Ref
V2-222Ref

6V_Power

CHANNEL_1

Channel

sig-
sig+

out

Clk
Din
CSn

Vbal
V2-000Ref
V2-222Ref

6V_Power

Dsc_P2
Dsc_P1

+5V

Analog4

Analog2

Analog1

Analog3

Bilev el2
Bilev el1

Sen_P2

Sen_P1

Sen_P4

Sen_P3
Sen_N3

Sen_N2

Sen_N1

Sen_N4

Sen_P1

Sen_P2

Sen_P3

Sen_N1

Sen_N2

Sen_N4
Sen_P4

Sen_N3

MDM-15 Pig-Tail Pins

Dsc_P2
Dsc_P1

Ch1_CSn

Ch2_CSn

Ch3_CSn

Ch4_CSn



32  

  
Figure 19.  Signal Conditioning Per Channel 
 
As input sensors change, the AE Recorder module must have adjustable gain to match.  Also, 
flexibility is needed to change gain in the field during test article build-up.  A programmable 
gain amplifier meets these requirements but is variable only in discrete increments.  The Texas 
Instruments PGA112, shown in Figure 19, has gain in binary increments from 1 to 128.  When 
combined with the rest of the fixed gain stages, gain from 6.25V/V to 800V/V is theoretically 
possible.  Noise limits the practical gain to 400V/V or less.  Control of the PGA112 is through 
the microprocessor’s SPI bus.   
 
Low-Pass, Anti-Aliasing Filter 
A low-pass filter is necessary to avoid aliasing high-frequency content onto lower frequency, 
thus distorting the measurements collected.  Switch-capacitor filters with sharp cut-off 
characteristics are available but have been found to display piezoelectric effects when used in 
high-shock instrumentation.  The number of poles realizable using discrete amplifiers is limited, 
as is the available board area.  A design compromise resulted with a 7-pole Butterworth filter 
that allows aliasing in the transition region between the Nyquist frequency and the sampling rate.   
 

 
Figure 20.  57 KHz Phase-Compensated Butterworth Low-Pass Filter with -1.25 Gain 
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The phase compensated, Butterworth, MFB topology filter design was taken from the 
3DDR-AM design (3) with few modifications and is shown in Figure 20.  Note that the first pole 
is implemented as a passive RC stage preceding the instrumentation amplifier as discussed 
above.  Analysis for the 3DDR-AM design ensured each amplifier had sufficient slew rate to 
support the gain-bandwidth product needed for its stage.  Total power for the Analog board, 
excluding the microcontroller circuit and accelerometer excitation, is about 50mA at 6V.  The 
design’s 12-bit ADC requires 72dB attenuation at 200 kHz, which is the 250-kHz sampling rate 
minus the 50 kHz highest non-aliased frequency desired by the customer.  We defined the pass-
band as having less than 5% magnitude deviation and less than 5% phase nonlinearity.  Thus, our 
50-kHz pass-band was achieved with a 57-kHz -3dB corner frequency.   
 
The AE Recorder has programmable gain to match accelerometer’s wide sensitivity variation.  
Sensor balance must also be adjustable to compensate for accelerometer offset voltage.  Two 
16-bit Analog Devices AD5664 Digital-to-Analog Converters, shown in Figure 21, generate the 
offset voltage needed for each of the four input channels.  In addition, 2.00V and 2.22V 
reference voltages were needed for all of the filter circuits, seen in Figure 20 as V2-000Ref and 
V2-222Ref.   

 
Figure 21.  Digital-to-Analog Converters Adjust Balance and Threshold 
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Comparator Circuit for Discrete Signal Capture 
Two other DAC voltages adjust the thresholds for the two discrete channels.  The threshold 
should not exceed the 3.3V comparator supply voltage.  This limit is enforced by the Digital 
board processor.  The discrete signal input is protected with an input resistor and a Zener diode, 
as shown in Figure 22.  The time constant of the RC filter is about 4 microseconds, selected to 
approximate the AE Recorder sample period. 

 
Figure 22.  One of Two Discrete Channel Comparator Circuits 
 
The discrete channel comparators are useful when events like contact closures are part of the 
data collected.  An analog channel needlessly uses the limited memory capacity when simple 
fact-of-function data are all that is needed.  As mentioned earlier, the threshold is programmable 
to provide additional flexibility.  However, because the 0V to 3V range is relatively restrictive, 
external voltage dividers may be required to apply a signal within the comparator’s range. 
 
Microcontroller Configures Analog Board 
The AE Recorder design included an I2C bus shared among all boards to configure the Analog 
and Power / Interface boards.  A Microchip PIC24FJ64GB002 microcontroller (13) in a small, 
28-pin QFN package accepts the I2C commands, qualifies them with the board address, and then 
controls the programmable gain and digital-to-analog converters using an SPI bus.  A TXS0108 
level translator converts the 3.3V microcontroller signal output to the 5V signal levels needed for 
the PGA112 programmable amplifier, as shown in Figure 23.  Level translation is not needed for 
the AD5664 DAC, but is applied to use the same SPI data and clock signals for all.  The 2-mm 
pitch, 5-pin programming connector has sufficient inter-pin spacing to be readily implemented 
for the test fixture.  The 0.05” pitch programming connector typically used is too closely spaced.  
 
A higher I2C pull-up resistance of 11.3k allows all four boards sharing the bus to be connected in 
parallel without over-loading the bus.  The resistance was selected for convenience from among 
the values used elsewhere in the design to reduce the bill of materials.  The service request signal 
I2C_Req_n was included in the event this feature was needed, and also uses a pull-up value from 
elsewhere in the design.   
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Figure 23.  Analog Board Microprocessor Controls Gain and Balance 
 
Op Codes sent from the Digital board using the I2C bus are listed in Table 1.  The I2C data 
following the address (board number) are interpreted to configure the PGA and DAC, or to 
control the 5V analog power.  The “Unlock Protected Parameters” command must precede the 
serial number and board number commands.  None of the values, including serial number and 
board number, are written to the board are transferred to non-volatile memory until the “Write 
Volatile Parameters” command.  Because the PGA and DAC are both powered from the 5V 
analog power, 5V power must have been enabled with the “Turn On 5V Power” command 
before any settings to the PGA or DAC are accepted. 
 

Table 7.  Analog Board Configuration Op Codes 
Op Code Bytes Function 
0x01 3 Unique serial number, 16-bit 
0x02 2 Board number: 0, 1, or 2  
>= 0x10 and <= 0x17 3 DAC routine, 16-bit value 
>= 0x20 and <= 0x23 2 PGA routine, 8-bit value 
0xA1 1 Turn on 5V power 
0xAE 1 Turn off 5V power 
0xC5 1 Read volatile parameters from nonvolatile memory 
0xCA 1 Write volatile parameters to nonvolatile memory 
0xD3 3 Unlock protected parameters, Op Code and 0x55, 0xAA 
 
Sensor excitation voltage shares the 5V analog power on the board, and each Analog board has 
its own regulator.  If a sensor draws too much current, the linear regulator will shut off which 
cuts 5V power to the entire Analog board and measurements from all four channels will be lost.  
Although 10V is still the default accelerometer calibration voltage, 5V is becoming more typical 
and is commonly used on battery-powered systems to reduce power consumption. 
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Control, Digitization, and Memory 
The core measurement digitization and storage functions are contained in the 3A6998 Digital 
board.  All the analog outputs from both the 3A6999 Power / Interface and 3A7000 Analog 
boards are connected here, and also the Analog board’s discrete signal comparator outputs.  An 
Actel Smart Fusion A2F500 Field-Programmable Gate Array (FPGA) orchestrates digitization 
and data movement through a short, internal First-In, First-Out (FIFO) buffer and then into non-
volatile memory.  The top-level diagram is shown in Figure 24, and the front and back of the 
circuit board shown in Figure 25.  (The patch on the board resulted from an error on the ground 
plane Gerber file, and has been corrected in Version 003.) 

 
Figure 24  Block Diagram for Digital Control 
 
The Actel Smart Fusion combined FPGA logic with ARM Cortex M3 core microcontroller 
reduces component count, board area, and design complexity.  The microcontroller implements 
the necessary supervisory control which handles the user interface, recorder configuration, and 
the NAND Flash bad-block table.  Aspects more efficiently handled with parallel logic include 
control logic to drive the memory addresses and ADC timing pulses, plus sequencing the internal 
FIFO buffering of ADC data acquired during NAND Flash programming time.  The logic section 
also handles the high-speed data extraction serial interface. 
 
During Arm mode while data are being acquired and stored, the microcontroller periodically 
monitors the quiescent value of all analog signals used to trigger the last phase of data capture.  
Because accelerometers in particular are strongly influenced by small temperature changes, the 
microcontroller updates the gradually-shifting quiescent reference levels used for the trigger 
comparison and stored in the Sampling Controller while the system waits for the abrupt change 
associated with the impact trigger.  This patented automatic threshold (4) adjustment is 
particularly important during long periods with the unit armed and waiting for trigger.  
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Figure 25.  3A6998-002 Digital Board 
 
On power up, the AE Recorder enters the “User” low-power mode with all the 5V analog power 
and sensor excitation voltages off.  A command over the external serial interface results in the 
microcontroller sending I2C messages to each Analog board that turns on the 5V power and 
initializes the gain (Programmable Gain Amplifier) and balance (Digital-to-Analog Converter) 
devices.  The user interface software has scripts that send a sequence of commands to adjust 
balance on all the accelerometer channels. 
 

 
Figure 26.  Digital Board Hierarchical Top Level 
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The 3A6998 Digital schematic top level, shown in Figure 26, indicates all the connections off the 
circuit board.  The PC1 through PC6 connections in the upper left are the power and control bus 
common to all the AE Recorder boards, with the Digital board the I2C bus master.  Although 
each of the other boards has an electrical connection for asserting the I2C_Req_n line, firmware 
was not implemented nor a reason for implementing it.   
 
On the right side of the schematic are JN3 through JN15, which are signals in the MDM-15S 
harness split between the Digital board and the 3A6999 Power / Interface board.  Connections on 
the Digital board focus on the serial interface (Cmd_Tx, Cmd_Rx, SerDes+, SerDes-) and 
special discrete signals (Arm_Indicate output, Heart_Sync_n input/output, Trig_Fidu_n 
input/output, and Xmit_Ena output).   
 
The remaining through-hole connections An1 through An24 include the analog and discrete 
signals that mostly originate on the Analog board.  Each of the three Analog boards produce four 
analog signals and two discrete signals.  The total of twelve analog signals are routed to the ADC 
module shown in Figure 26.  Dropping down the hierarchy into this block, the schematic section 
shown in Figure 27 contains the digitizer details.  Each of the analog input signals has a 100pF 
filter capacitor, which when combined with the 49.9-Ohm resistor on the Analog board provides 
a passive 18-MHz low-pass filter.  All of the capacitors on analog portion of the Digital board 
are either NPO or tantalum to minimize piezoelectric contamination of the analog signal.  The 
Smart Fusion logic drives all the control signals to acquire each pair of channels in sequence.   
 
The primary criteria for analog input signal routing to the ADC was minimizing routing layers 
and thus signal contamination.  This meant the signals did not line up sequentially with channel 
digitization, and also did not line up with the gain and balance devices on the Analog board.  
These issues were compensated in the Smart Fusion microcontroller to map all of these to a 
consistent index which is listed later in Table 9 and Table 10.   
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Figure 27.  Analog-to-Digital Converter Schematic 
 
The Memory block from the Figure 26 hierarchy view is shown as schematic details in Figure 
28.  The ADC_Data bus from the ADC output is routed through the Smart Fusion fabric into the 
NAND Flash and FRAM memory.  Both memory types are needed to meet design requirements.  
FRAM has an advantage recording the pre-trigger data because it can be rewritten quickly during 
a possibly hours-long circular memory operation waiting for the brief pre-trigger recording, yet 
is non-volatile.  However, capturing the 5-seconds required recording time requires a much 
larger memory: the NAND Flash.  The small FIFO implemented in the FPGA is adequate to 
buffer continuous data collection during the programming periods of the NAND Flash.  Thus, the 
FPGA can implement this function without additional external devices.  Unfortunately, the FIFO 
has insufficient capacity to handle all the pre-trigger data so the FRAM is still needed. 
 
The Micron NAND Flash MT29F8G08ABABAWP-IT with 1.074x109 Bytes (14) has a 500us 
worst-case write time for a 4096-byte block.  This write time plus the transfer time to the Flash 
internal buffer limit the maximum AE Recorder sampling rate.  The block contains 204 of the 
20-byte sample sets.  The total recording time is thus 213.96 seconds.  The microcontroller 
maintains the Flash bad-block table and prepares the address for the next Flash block read during 
data extraction or written during data acquisition.  The memory interface takes the best 
advantage of the FPGA by using parallel logic to efficiently handle data movement and internal 
FIFO buffering, while relying on the microcontroller function to select the next valid block.   
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Measurements must be continually captured at precise time intervals without interruption.  The 
NAND Flash memory cannot accept a continuous stream of data during its addressing phase or 
500-microsecond-long programming phase.  All data destined for the NAND Flash pass through 
the FIFO before being transferred to the Flash internal programming buffer.  The FIFO memory 
size is relatively small:  only 4k bytes, equal to the size of one Flash write buffer.  At 250k 
samples per second, the AE Recorder captures 20 bytes of data every 4 microseconds, and the 
FIFO holds 204 sample sets which corresponds to 816 microseconds.   
 
Unless two NAND Flash chips are used in ping-pong fashion, the page programming speed 
limits the maximum sampling rate.  Other Flash devices list a 500us typical page-programming 
interval, but have an unacceptably high maximum value and were therefore unable to keep up 
with data storage rate.  The average programming time per byte cannot be less than the 
acquisition time per byte, which depends on the sample rate chosen.  For a 250k samples per 
second rate, the Flash chip must be able to store at least 5M bytes per second.  The 
MT29F8G08ABABA is able to store 4320 bytes in a maximum of about 675 us when using a 20 
ns (50 MHz) clock, giving a satisfactory minimum input data rate of 6.4M bytes per second.  
(Because Flash memory can have data reliability issues, a Reed-Solomon encoding scheme 
creates error detection values stored in 86 of the extra 224 bytes beyond the normal 4096-byte 
page.  The Reed-Solomon is also used to generate error detection codes when transmitting the 
data during data extraction.  Both normal-speed and high-speed serial interfaces are included for 
control and data extraction, respectively.)   
 
FRAM, Ferroelectric Random Access Memory, is named for the ferroelectric phenomena, 
although it is not actually affected by magnetic fields.  FRAM is ideal for the pre-trigger buffer 
because it is non-volatile, random-access, can be rewritten trillions of times, and has no need to 
erase stored data before reusing its location.  The Ramtron FM22L16 FRAM (15) is organized as 
256k x 16 bit, which holds 26,214 of the 20-byte sample sets.  At 250k samples per second, the 
capacity is 105 milliseconds, however, the design is configured to store only 75ms pre-trigger 
data, with the remaining capacity used to allow initial overlap between the FRAM-stored data 
and the Flash data.   
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Figure 28.  NAND Flash and FRAM Memory Interface 
 
The schematic details of the SmartFusion hierarchical block are shown in Figure 29, which 
includes design blocks within the Smart Fusion FPGA and some external components such as the 
oscillator U11 and discrete buffers.  The Smart Fusion FPGA uses an internal Phase-Locked 
Loop to generate 150 MHz using the Silicon Laboratories Si500S oscillator, programmed by the 
component distributor (Digi-Key) to 20 MHz.   
 
As an example of an FPGA block, the I2C / serial interface module depicted near the oscillator 
allows the microcontroller in its supervisory control role to send configuration data to other 
system boards using the I2C interface.  This module also contains the SerDes high-speed serial 
interface for rapid extraction, and the 115.2k Baud UART interface for external user control. 
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Figure 29.  Smart Fusion Discrete Signal and Serial Interface 
 
Communicating with Recorders 
The recorder unit primarily communicates using a 115.2k Baud serial link with 8 bits, no parity, 
1 stop bit, no flow control.  Any of several interface boxes can be used to connect to it, but a 
QuickUSB interface is required to use SerDes data dump commands like F, G, and g.  The 
commands are listed in Appendix A – Alphabetical Command List, Appendix B – Command 
List by Category, and Appendix C – Command Descriptions in Depth. 
 
There are two potential operating modes for a recorder: 

1. Controlled by a computer program, such as a graphical user interface (GUI) 
2. Controlled by a human at a serial terminal 

 
When a human is entering commands directly, it’s easier if the person can see what they’re 
typing.  They can make sure each command is correctly entered, and use backspace to correct 
any mistakes.  In this mode, the recorder echoes back every keypress it receives, as well as 
sending the responses from commands. 
 
However, when a computer program is in control, echoed characters are unnecessary overhead.  
The program doesn’t need to know what it’s transmitted, only the response from the command.  
In this mode, the recorder only sends responses. 
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The recorder starts up in program-controlled mode, with input echoing off.  To change modes, 
use command “?” to switch to human-controlled mode (and print a list of available commands), 
and command “/” to switch to program-controlled mode.  It doesn’t hurt anything to switch to 
the mode the unit is already in, and in fact it’s expected that a user will use command “?” to get a 
list of commands while already in human-controlled mode. 
 
Having a recorder in human-controlled mode when actually a program is in control will lead to 
strange results as the program tries to parse the echoed command as if it were a response, so 
always end with command “/” when you’re done entering commands manually. 
 
Although backspace works, the arrow keys don’t.  If a command must be edited, backspace is the 
only tool available.  Also, there is no command history other than the screen buffer of your 
terminal program. 
 
Issuing Commands 
Each recorder unit needs to be issued an individual address, so that commands can be sent 
specifically to that recorder when it’s in a multi-recorder system.  An address is the first 
character sent following a newline (i.e. a press of the enter key, a transmission of ‘\n’ from a 
program).  A recorder will disregard any command not addressed to it. 
 
For example, to send command C to a unit with address ‘1’, type: 
1C<enter> 
Only the unit with address ‘1’ will reply, with the response K (or !, if command C isn’t allowed 
right now); if another unit with address ‘2’ is listening on the same serial connection, it will 
ignore the command. 
 
However, if you want to send command C to all units, use the special address ‘0’: 
0C<enter> 
No units will reply (to prevent contention at the serial multiplexer), but all units will accept the 
command.  However, depending on the units’ states, the command might not have an effect for 
all of them; for C, it depends on whether or not they’re armed.  Be sure that all units are prepared 
to accept a particular command before you send it to all units, as you will receive no feedback if 
there’s an error.  Optionally, after issuing a command to all units, you can use individually-
addressed diagnostic commands to see if the command was successful on each unit. 
 
(In this context, for a unit to “reply” means to send a response back through a multi-recorder 
system containing a serial multiplexer.  This involves the recorder not only transmitting a 
response on its serial output, but asserting its Xmit_Enable output to put that response on the 
output of the serial multiplexer.  Every recorder will transmit a response on its serial output when 
it receives a command addressed to it (even with address ‘0’), but it won’t assert its Xmit_Enable 
output unless specifically addressed – if multiple units asserted Xmit_Enable at once, there 
would be a conflict on the output of the serial multiplexer.  One side effect of this two-signal 
system is that it’s easier to debug a unit’s behavior, as a unit’s responses are always available 
from its serial port.) 
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Finally, it’s possible to configure a unit to not 
have an address (see the in-depth description of 
command +).  Such a unit will always act as if its 
address character has already been received.  For 
example, to issue it the command C, simply send: 

C 

The unit will not reply to any command.  
Naturally this is only for single-unit debug and 
testing purposes, as a direct serial connection to 
the unit will be required to read the unit’s 
responses; a serial multiplexer will never pass the messages along. 
 
Argument Parsing Principles 

 Field types are fixed.  If a field requires a decimal value, you can’t enter 0x10 if you want 
sixteen; enter 16. 

 Hexadecimal fields don’t require any prefix or suffix.  If the field description says that a 

hexadecimal value is required, just enter the hex digits, e.g. c56 for 0xc56.  Letter case doesn’t 
matter to hex values, so C56 works just as well. 

 String fields are always at the end of a command, and may include any characters except 
newlines and backspaces.  They are terminated by a newline (i.e. by reaching the end of the 
command) or by reaching the maximum length for the field (generally 32 characters). 

 Fields that aren’t string fields are terminated by a space character, by an invalid character (i.e. 
one that doesn’t match the field type), or by reaching the maximum length, which is given in the 
field description.   

o Example 1:  If a command requires a hexadecimal value, an argument of 0x12 will be 
parsed as a zero followed by an invalid character, and interpreted as “0”, while x12 is 
kept to be used as the next argument (if one exists). 

o Example 2:  If a command requiring a decimal value is given an argument of 12ac, it will 
be interpreted as “12”, as “a” is not a valid decimal character; ac would be used for the 
next argument. 

 Any number of spaces between arguments is valid, but tabs and other whitespace are not 
allowed.  It’s even legal to have zero spaces between arguments, but that’s likely to have 
unexpected results unless you’re very careful to make every argument the exact maximum 
length. 

 Leading zeros are not necessary for decimal and hexadecimal arguments, but they are not 
ignored.   

o Example 3:  If the command requires two argument fields of three bytes each, giving it 0 
23 will be interpreted as “000000 000023” but 00000000 23 will be interpreted as 
“000000 000000” and the “23” will be dropped.  The first 6 zeros will make up the three 
bytes of the first field (terminated by maximum length), the next two zeros will make up 
the second field (terminated by the space), and the command doesn’t have any more 
fields for the “23” to go into. 

Serial_In_1

Serial_In_2

Serial_Out_1

Serial_Out_2

Xmit_Enable_1

Xmit_Enable_2

PC Serial_In

PC Serial_Out

Serial Multiplexer – Simplified Schematic
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 If extra arguments are given to a command, they are ignored.  If not enough arguments are 
provided to a command, the response will indicate an error.  

 If an argument is out of range, the response will indicate an error. 

 
Command Responses 
Each command has a response format given in the list of command descriptions.  The response 
format shown in the list is the format of a successful response; in many cases, a successful 
response will be simply “K”. 
 
An unsuccessful (error) response will start and end with “!”; usually this takes the form of a 
simple single “!”, but more complicated messages such as “! 00000005 3 2066 !” are possible for 
a few commands.  (These messages explain exactly where in the firmware the error occurred, 
and are generally useful only to the developers.) 
 
All responses are a single line, i.e. zero or more characters followed by a carriage return and 
linefeed (in C syntax, "\r\n").  (Empty lines are possible only for command i; other commands 
will always return at least one character before the newline.) 
 
Hexadecimal fields in a response can have leading zeros, but decimal response fields won’t. 
 
User-defined strings, i.e. the arm string and unit description string, have a fixed length of 32.  If a 
string provided by the user is less than 32 bytes long, the string will be padded when it appears in 
a response.  The pad bytes will be null characters (bytes of value 0x00), which makes printing 
such responses slightly tricky, as using printf("%s") will end the printing when the nulls start; 
fwrite() is one way to make sure that all the characters get printed. 
 
The debug menu command, command J, contains exceptions to most of these rules. 
 
Retrieving Data 
Recorded data can be downloaded from the recorder either via low-speed serial (the same link 
used for commands) or high-speed SerDes.  Making a SerDes connection requires a particular 
type of interface box, containing a QuickUSB chip. 
 
SerDes is about a thousand times faster than low-speed serial when data is being moved, but this 
doesn’t include the time spent issuing commands or decoding and storing the received data.  To 
increase dump speed, reduce overhead by requesting many pages at once over SerDes, for 
example 256, 512, or 1024 pages per command. 
 
Operating Modes 
The recorder has several operating modes, which affect (among other things) the commands the 
unit will accept.  All modes except Recording can be cancelled with command f, which returns 
the unit to User or Locked mode.  The current mode is given by commands s and W. 
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Table 8.  AE Recorder Operating Modes 

Mode (cmd s) 
Submode 
(cmd W) 

Description 

USER 

U  User – The unit isn’t doing anything.  This is the default mode. 

L 
Locked – The unit’s memory contains recorded data; to protect it, all 
commands that change the contents of memory are locked out (i.e. 
will return an error) until command E is issued. 

D 

Delay‐Arm – The unit is in a low‐power state with signal amplifiers 
and accelerometers off, counting down a timer until it switches to 
Warmup mode.  Command d gives the remaining time.  Command S 
will return bad values for analog inputs and bilevel inputs in this state. 

ARM_FIRST 

W 

Warmup – The accelerometers have been turned on and are warming 
up.  Trigger events are ignored.  Command l can set how long this 
lasts.  Command d gives the remaining time until the unit switches to 
Arm‐First mode. 

F 
Arm‐First – The unit is now truly armed and is storing pre‐trigger data 
to FRAM.  Any trigger event will begin Recording. 

RECORDING  R 

Recording – The unit has been triggered.  Data is being stored to 
flash.  How much data will be stored is set by command n. 

When recording is complete, the next mode depends on whether 
multi‐trigger is enabled (command t); the next mode will be Arm‐
Again if multi‐trigger is enabled, Power‐down otherwise.   

If flash memory becomes completely filled, the unit will go to Power‐
down mode immediately. 

This is the only mode that cannot be force‐exited with command f; 
only command R can stop this mode before it’s finished. 

ARM_AGAIN  A 

Arm‐Again – The unit is waiting for another trigger.  When a trigger 
event occurs, the unit will enter Recording mode.  

Unlike Arm‐First, no data is stored to FRAM while the unit is in this 
state. 

POWER‐
DOWN 

P 

Power‐down – The unit is finished recording.  When the unit enters 
this state, it can optionally turn itself off; this is controlled by 
command ;.  If the unit does not turn itself off, it will not stay in this 
mode but will enter User mode. 

Others  O 
Other modes exist, but they are for short operations performed by 
some commands, which end before another command can be run.  
The only modes that should be seen by the user are listed above. 

 

Recorder Configuration 
The recorder contains two sets of configurations: one in RAM, and one in nonvolatile memory.   
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Figure 30.  Recorder Configurations Diagram 

The configuration in RAM is the current, active one, controlling what the recorder does; it is lost 
when the recorder is reset or turned off.  The configuration in nonvolatile memory is a backup; it 
is copied to RAM when the recorder is reset or turned on. 
 
Command X is used to move configuration data between RAM and nonvolatile memory.  With a 
nonzero argument, it will save the current configuration.  With an argument of zero, it will 
restore the saved configuration, overwriting the current configuration. 
  
Resetting the recorder with command R will also reload most settings from nonvolatile memory.  
The exceptions are the settings stored on analog boards, controlled by commands V, Y, y, and Z. 
 
Many commands change part of the recorder’s configuration.  Some of these commands save 
their changes to nonvolatile memory immediately, but other commands only store their changes 
in RAM.  The difference is that some commands’ settings might be changed a lot before the user 
decides on a good value; these commands are designed to only affect RAM.  Once a good value 
is found, it can be saved to nonvolatile memory.  Other commands, meanwhile, aren’t used often 
and aren’t useful for experimentation; these commands save their changes immediately. 
 
Recording Data, Arming, and Triggering 
At the very least, the following must be done for a successful data-recording session: 

1. Unlock write access to the flash: E 
2. Clear the existing data from the flash: b 
3. Optional: Set the length of the recording period: n <pagesPerTrigger> 
4. Arm the unit: A [armString] or D <delaySeconds> [armString] 
5. Recording will begin when the unit is triggered, either manually via command C or due to a 

trigger condition being satisfied by an input 

 
When an arming command is sent to a recorder, there are several periods of time that must pass 
before it is ready to be triggered and store data: 

1. Delay‐Arm (only if arming happens using arm‐on‐power‐up or command D) 
2. Warmup (length is controlled with command l) 

Only when the Warmup period is complete will the unit respond to triggers, either input-based or 
caused manually with command C. 
 
Triggering on a given input channel requires: 
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 The unit is in an armed state (Arm‐First or Arm‐Again) (check with W) 

 The input channel is enabled as a trigger source (set with M) 

 At least one of the channel’s two thresholds is enabled (set with m) 

 An enabled threshold must be satisfied for the minimum number of consecutive records (set 

with q) 
A threshold being satisfied means, for an analog channel, that the measured value is less than the 
low threshold (quiescent value – offset) or greater than the high threshold (quiescent value + 
offset).  Threshold offset is set with command o.  (A measured value equal to the threshold does 
not satisfy it, so a sufficiently large offset makes a threshold impossible to satisfy.)  For a digital 
channel, the low threshold is satisfied by a low value and the high threshold is satisfied by a high 
value; the cutoff voltage between “low” and “high” values is set with command Z. 
 
Channel Indexing 
Most commands that take a channel as an argument require a channel index.  The inputs are 
assigned to channel indices in the following way.  (The ordering of the analog input indices is 
due to the order in which the channel inputs are wired to the ADC chips.) 
 

Table 9.  Analog Channel Indexing 
Channel Type  Input  Channel index 

Analog 

Analog1  5 

Analog2  4 

Analog3  3 

Analog4  1 

Analog5  2 

Analog6  0 

Analog7  11 

Analog8  10 

Analog9  9 

Analog10  7 

Analog11  8 

Analog12  6 

Digital 

Bilevel1  12 

Bilevel2  13 

Bilevel3  14 

Bilevel4  15 

Bilevel5  16 

Bilevel6  17 

Fiducial digital 
Fiducial7 (Heart_Sync_n)  18 

Fiducial8 (Trig_Fidu_n)  19 

Manual trigger  C command  20 

 
For convenience, a table of just the analog inputs from the above table, sorted by channel index: 
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Table 10.  Analog Input Sorted by Channel Index 

Channel index  0  1  2  3  4  5  6  7  8  9  10  11 

Analog input  6  4  5  3  2  1  12  10  11  9  8  7 

 
Time Reporting 
The time base of the recorder when storing data is based on the rate at which records are taken.  
Each record requires a minimum of 167 processor cycles to acquire and store; an additional 
number of cycles can be added to that to produce a variable recording rate.  The clock rate of the 
main processor is 50 MHz, so the default number of additional cycles is 33, to store 250,000 
samples per second; at 0 additional cycles, the recorder can theoretically store about 299,400 
samples per second, but this mode has not been rigorously tested.  The number of additional 
cycles can be read and written with command Q. 
 
Time is measured by the recorder in units of records, to which an FRAM address can be directly 
translated; since the FRAM is filled in about 0.1 seconds, a larger scale timer is also needed.  
Much like the hour and minute hands on a clock, the wraparound counter (aka “loops” counter) 
increments each time the FRAM write location reaches the end of FRAM and wraps around. 
 
The duration since arm for a given FRAM address and wraparound count is: 
(floor((FRAM address [17..3]*8+7)/10) 
 + 26214 * FRAM wraparound count [19..0]) records 
  * 20 ns/cycle * (167 cycles/record + betweenRecordDelay) 
Assuming the default betweenRecordDelay of 0x21, one record is sampled every 4000 ns. 
 
Only some of the bits of the FRAM address are used in the equation above; this is because only 
those bits are stored when a trigger happens.  To use the equation with the output of command e, 
use the position value the command returns in place of (FRAM address [17..3]*8+7) and 
loops in place of FRAM wraparound count [19..0]. 
 
Firmware Version Notes 
Firmware version 2014 and below 
In these versions, command n only returns a single field, which is pagesPerTrigger.  The 
secondsPerTrigger field is not present. 
 
Firmware version 2013 and below 
In these versions, commands Y and y have a different type of channel selection field.  For these 
commands only, the first command field, channel, is not a channel index, but is instead the 
externally-visible analog input number, minus one.  That is, to refer to input AnalogN, the value 
of channel should be N–1.  For example, for a channel of 4, the selected input would be 
Analog5.  Also, the output of command s is much less detailed, containing fewer subfields.  
Finally, flash-accessing commands such as _ and 3 can be invoked outside of USER mode, 
which will cause the unit to change modes; this is a problem if the unit is armed at the time. 
 
Firmware version 2012 and below 
These versions lack the ~ command.  The hardware they were designed for only had one fiducial 
signal, Trig_Fidu_n, which was connected to both fiducial channels; the heartbeat signal was not 
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recorded.  The two fiducial channels were only linked in terms of their input, so changing the 
trigger configuration of one fiducial would not affect the trigger configuration of the other. 
 
Firmware version 2011 
This version has an S command with a different output order – the analog values are sorted by 
external channel number (from analog1 to analog12), rather than by internal channel index (from 
analog6 to analog7, see the Channel Indexing section).  For backwards compatibility, issuing S 
with a nonzero argument will sort the returned channel values in the same order as all other 
firmware versions. 
 
Also, the analog configuration values saved in eNVM are sorted by external channel number; 
this causes saved configuration values to be used for different channels if changing versions 
to/from version 2011, since the raw data in eNVM is not modified by version changes.  This also 
means that commands M, m, o, and q use the external channel number to determine analog 
channel bit positions and channel selection. 
 
Avoid using this firmware version if possible. 
 
Firmware version 2008  
This version has a bug in its SERDES flash dump function.  If there are any bad blocks, the 
wrong parts of flash will be skipped during dumping, and there will be some duplication of 
pages.  The low-speed serial flash dump command 3 works correctly, though it is rather slow; 
using it to dump flash overnight or over the weekend may be preferable to manually undoing the 
effects of the bug. 
 
Avoid using this firmware version if possible. 
 
Data Structure Definitions 
The subsequent discussion of the FIFO and transfer of data into the Flash is clarified with a few 
definitions of various structures used in this design and their sizes.   
 
Record 
20-byte structure.  Usually contains one sample of all analog/digital input channels plus some 
status flags, but may instead contain housekeeping data if multiple-trigger mode is enabled.  See 
the Data Records section for details. 
 
Glob 
12 records.  Size is 240 bytes, the most records that fit into a single Reed-Solomon encoding 
operation.  (After encoding, the glob is 246 bytes long including the ECC bytes; if you’re reading 
from flash or via SERDES, you’ll get 246-byte globs.) 
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Table 11.  NAND Flash Memory Glob Definition 
Glob bytes  Contents 

0‐19  Record 0 
20‐39  Record 1 
40‐59  Record 2 
60‐79  Record 3 
80‐99  Record 4 
100‐119  Record 5 
120‐139  Record 6 
140‐159  Record 7 
160‐179  Record 8 
180‐199  Record 9 
200‐219  Record 10 
220‐239  Record 11 
240‐245 
(optional) 

Reed‐Solomon ECC (flash and/or SERDES only) 

 
Chunk 
204 records, i.e. 17 globs.  This is the most records that fit into a single page, either FRAM (raw, 
4080 bytes) or flash (after Reed-Solomon encoding, 4182 bytes).  The SRAM holds one chunk. 
 
Page 
4096 bytes in FRAM, 4182 bytes in flash.  (A flash page can hold up to 4320 bytes, but only the 
first 4182 are used, as there’s not enough room for another glob.)  The native about-4-kilobytes 
unit for a given memory system, a page holds at least one chunk. 
 
Pages are padded to a multiple of 256 bytes when sent over SERDES, for USB-related reasons.  
FRAM pages are Reed-Solomon encoded before SERDES transmission; this involves padding to 
the next glob boundary before being encoded, then padding to the next 256-byte boundary before 
SERDES transmission. 
 
Block 
128 pages, about 512K.  The FRAM holds one block. 
 
Trigger housekeeping data 
8 bytes of non-record data describing the circumstances of a trigger.  They store the cause of the 
trigger and the time after initial arming that the trigger occurred.  The first trigger’s data is stored 
in FRAM; subsequent triggers (if enabled) have their housekeeping data padded to the size of a 
record for storage in flash. 
 
Understanding Recorded Data 
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Table 12.  Data Record Structure Organized in 1-Byte Increments 
byte  contents 

0  analog input 6 [7..0] 
1  analog input 12 [3..0], analog input 6 [11..8] 

2  analog input 12 [11..4] 
3  analog input 3 [7..0] 
4  analog input 9 [3..0], analog input 3 [11..8] 
5  analog input 9 [11..4] 
6  analog input 4 [7..0] 
7  analog input 10 [3..0], analog input 4 [11..8] 
8  analog input 10 [11..4] 
9  analog input 2 [7..0] 
10  analog input 8 [3..0], analog input 2 [11..8] 
11  analog input 8 [11..4] 

12  analog input 5 [7..0] 
13  analog input 11 [3..0], analog input 5 [11..8] 
14  analog input 11 [11..4] 
15  analog input 1 [7..0] 
16  analog input 7 [3..0], analog input 1 [11..8] 
17  analog input 7 [11..4] 
18  status bits [7..0] 
19  digital inputs [7..0] 

 
 

Table 13.  Data Record Structure Organized in 3-Byte Sequence 
byte offset  byte 2 [7..0]  byte 1 [7..0]  byte 0 [7..0] 

0  analog input 12 [11..0]  analog input 6 [11..0] 
3  analog input 9 [11..0]  analog input 3 [11..0] 
6  analog input 10 [11..0]  analog input 4 [11..0] 

9  analog input 8 [11..0]  analog input 2 [11..0] 
12  analog input 11 [11..0]  analog input 5 [11..0] 
15  analog input 7 [11..0]  analog input 1 [11..0] 
18  ‐‐‐  digital inputs [7..0]  status bits [7..0] 

 
(The internal order of the analog inputs is different from the input numbers, due to the order in 
which the channel inputs are wired to the ADC chips.  This numbering is seen in the response 
from the ‘S’ command, which orders the analog channels by internal index.  The correspondence 
is as follows.) 
 
Sorted by analog input: 
Analog input  1  2  3  4  5  6  7  8  9  10  11  12 

Internal index  5  4  3  1  2  0  11  10  9  7  8  6 
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Sorted by internal index: 
Internal index  0  1  2  3  4  5  6  7  8  9  10  11 

Analog input  6  4  5  3  2  1  12  10  11  9  8  7 

 
Digital inputs definition 
Bit 7: The “trigger detected” fiducial.  If all recorders in a system have their OTrig_Fidu_n pins 
connected to a common line, this fiducial is pulled low when any recorder is triggered.  Even the 
recorder that was triggered sees this low-going pulse, which lasts for just over 4 sample periods.  
A lone recorder will see 4 consecutive zero values on this channel (starting immediately after the 
triggering record), but in a multi-recorder system the interactions between recorders could cause 
5 or more consecutive zero values to be present. 
Bit 6: The “synchronization” fiducial.  Pulled low by the Heart_Sync_n pin, which itself can be 
optionally driven by a 1Hz heartbeat signal.  In a multi-recorder system, connecting all the 
recorders’ Heart_Sync_n pins to a common signal source (perhaps external) provides a data 
alignment fiducial unrelated to trigger events. 
Bits 5..0: Digital input channel values.  Bit 0 is digital channel 1, etc. 
 
Status bits definition 
Bits 7..2: One fourth of the internal ADC data.  Each group of four consecutive records contains 
the full 24 bits of internal ADC data, 12 bits from each ADC. 
Bit 1: PLL locked state (1=locked).  If it’s unlocked, the system clock isn’t running at 50 MHz 
anymore, and the timing and integrity of the record’s data is suspect.  This should never happen. 
Bit 0: Different meanings in FRAM and flash.  In FRAM, it’s the FRAM seam detect bit 
(differing values in consecutive records indicates where the FRAM stopped recording); in flash, 
it’s an index bit for the internal ADC data (1 in the first of the group of four records, 0 in the 
other three records). 
 
Internal ADC data – part of the status bits 
The internal ADCs (built into the SmartFusion), which measure battery and capattery voltages, 
are slower than the external ADC chips, which measure the analog input channels.  The internal 
ADCs take data once every four recording periods.  That data is then spread out over four 
consecutive records.  Which of the internal ADC data bits are stored in a given record is 
determined by something we call a “record index”, which represents how many 6-bit half-values 
have already been stored in the current 4-record group.  The record index for a given record is 
not stored anywhere; it must be determined from the contents of nearby memory (in flash) or the 
record’s contents and address (in FRAM). 
 
Internal ADC storage in flash 
In flash, there’s no guaranteed connection between memory address and record index because 
there might be housekeeping records present at lower addresses, which store a record’s worth of 
data to flash without affecting the record index.  This makes a separate indicator necessary, 
namely status bit 0.  In flash, status bit 0 is high only when the record index is 0, i.e. when a new 
set of 4 records is beginning.  This lets a reader start anywhere in flash and be able to start 
reporting accurate internal ADC data within 7 records, by simply ignoring the internal ADC data 
bits until a high status bit 0 is found and the record index is known.  (Note that housekeeping 
records also have the bit equivalent to status bit 0 set high, as part of their padding!) 
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Internal ADC data storage across consecutive records in flash: 
Status bit 0 (in flash)  Record index  Status bits 7..2 

1  0  Internal ADC 0 (Vcap) [11..6] 
0  1  Internal ADC 0 (Vcap) [5..0] 
0  2  Internal ADC 1 (Vbat) [11..6] 
0  3  Internal ADC 1 (Vbat) [5..0] 

 
Internal ADC storage in FRAM 
In FRAM, the correspondence of the contents of status bits 7..2 to record index is the same, but 
status bit 0 has a different meaning.  Status bit 0 is generally constant from record to record, 
changing its value only when recorded data reaches the end of FRAM and wraps around.  Since 
the number of records that fit in FRAM, 26214, is divisible by 2 but not by 4, record index in 
FRAM can be directly determined from a record’s address and status bit 0.  Specifically, record 
index can be obtained by combining two bits of a record’s first FRAM address with the value of 
status bit 0 using this algorithm: 
record_index = FRAM_address[2..1] XOR (status_bit_0 << 1) 
 

Table 14.  Internal ADC Data Storage in FRAM across Consecutive Records 
FRAM address  Status bit 0 (FRAM)  Record index  Status bits 7..2 

0bxx…xx000  0  0  Internal ADC 0 (Vcap) [11..6] 
0bxx…xx010  0  1  Internal ADC 0 (Vcap) [5..0] 
0bxx…xx100  0  2  Internal ADC 1 (Vbat) [11..6] 
0bxx…xx110  0  3  Internal ADC 1 (Vbat) [5..0] 
  …  …  … 
0bxx…xx100  1  0  Internal ADC 0 (Vcap) [11..6] 
0bxx…xx110  1  1  Internal ADC 0 (Vcap) [5..0] 
0bxx…xx000  1  2  Internal ADC 1 (Vbat) [11..6] 
0bxx…xx010  1  3  Internal ADC 1 (Vbat) [5..0] 

 
Housekeeping Data (Trigger Descriptions) 
The trigger source and trigger time are stored as trigger housekeeping data in FRAM for the first 
trigger and in flash for all subsequent triggers. 
 

Table 15.  FRAM Addresses for Trigger and Housekeeping Data  
address  word contents 

0x3fffc  0, FRAM address [17..3] 
0x3fffd  FRAM wraparound count [15..0] 
0x3fffe  Trigger origin [11..0], FRAM wraparound count [19..16] 
0x3ffff  0000000, Trigger origin [20..12] 
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Table 16.  NAND Flash Pseudo-Record Structure for Trigger and Housekeeping Data 
byte  contents 

0  0xfc 
1  0x96 

2  0x30 
3  0x03 
4  0x69 
5  0xcf 
6  FRAM address [10..3] 
7  0, FRAM address [17..11] 
8  FRAM wraparound count [7..0] 
9  FRAM wraparound count [15..8] 
10  Trigger origin [3..0], FRAM wraparound count [19..16] 
11  Trigger origin [11..4] 

12  Trigger origin [19..12] 
13  0000000, Trigger origin [20] 
14  0xfc 
15  0x96 
16  0x30 
17  0x03 
18  0x69 
19  0xcf 

 
Bytes 0-5 and 14-19 are constant padding, intended to be a distinctive marker of a housekeeping 
record.  Note that the equivalent of the status byte, byte 19, has bit 0 set; this bit is therefore not 
an infallible indicator of record index 0 in flash.  The possibility of a housekeeping record must 
also be tested by seeing if the mentioned bytes possess the constant values defined above. 
 
Trigger origin flag bits 
The flag bits in the trigger origin bit vector correspond exactly to channel indices; see the 
Channel Indexing section for more information, but the short version is: 
 
Bits 0-11: analog channels index 0-11 (internal channel indexing, not external channel numbers) 
Bits 12-17: bilevel (digital) channels 1-6 
Bit 18: Heart_Sync_n fiducial digital channel 
Bit 19: Trig_Fidu_n fiducial digital channel 
Bit 20: force-trigger from microcontroller 
 
If a bit is set, then the corresponding source caused the trigger event.  It’s possible for multiple 
bits to be set, indicating that multiple sources caused a trigger event simultaneously, but this 
requires multiple trigger conditions to be satisfied by a single record. 
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Timekeeping Principles 
Time elapsed since arming is derived from the FRAM address and FRAM wraparound count in 
the following way: 
 
Since the FRAM address increases by 10 for each record that is stored (a 20-byte record fits in 
10 FRAM words), the lowest 3 bits of the FRAM address are unnecessary to uniquely determine 
each record’s address.  (The unknown three bits define an interval of 8 addresses.  Only one 
boundary between groups of 10 addresses can fit into that interval, maximum.)  For a given 
FRAM address A=0bxxxxxxxxxxxxxxx000, the number of records that begin prior to that 
address is floor((A+7)/10).  Because the time taken to store each record is defined by the 
software (by adjusting the clock cycles of stall between sampling cycles), the FRAM address can 
be converted into the time elapsed since the most recent write to FRAM address zero, serving as 
a short-term clock.  For this reason, the FRAM address counter is kept running, even when no 
data is being stored to FRAM anymore. 
 
Similarly, the FRAM wraparound count serves as a long-term clock.  Given the number of 
records that fit in the FRAM, the time taken for each wraparound can be easily derived, and the 
number of wraparounds multiplied by that time to give the larger-scale offset from the very first 
FRAM write.  The number of records that fit in FRAM is floor((FRAM_BYTE_CAPACITY-
8)/20), or 26214 when using the Ramtron 22L16.  Each wraparound thus takes time equal to 
(user-defined record duration)*26214. 
 
All told, the duration since arm for a given trigger housekeeping structure is: 
(floor((FRAM address [17..3]*8+7)/10) 
 + floor((FRAM_BYTE_CAPACITY-8)/20)*FRAM wraparound count [19..0]) 
  * (20 ns * (167 cycles + user-defined stall cycles setting)) 
 
Assuming the default stall cycles setting of 33, one record is sampled every 4000 ns. 
 
FRAM Seam Discovery 
The oldest record in FRAM will most likely not be at FRAM address zero.  When interpreting 
data from FRAM, therefore, the records will need to be shifted around such that the oldest record 
comes first in the data.  The address of the oldest record is called the seam address, because it’s 
the point of division between two consecutive cycles through the FRAM circular buffer. 
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The position of the “seam” in the FRAM circular buffer (where newest and oldest data are 
adjacent) can be determined by monitoring status bit 0 in each record stored in FRAM.  Status bit 
0’s value is toggled every time the buffer wraps around; starting from the record at address zero, 
the record in which the value of this bit changes from constant-x to constant-not-x is the record at 
the seam address and the oldest record in FRAM.  If all records have the same status bit 0 value, 
then the seam address is zero and the first record is the oldest record. 
 
The seam address can also be derived from the trigger time (which is an FRAM address) and the 
overlap record count configuration:  

(overlap records)*(10 FRAM addresses/record) + (stored trigger address) + 10 = (seam 
address) 

Since the lowest three bits of the trigger time address aren’t stored in housekeeping, the stored 
trigger address needs to be rounded up to the next record boundary, i.e. the next multiple of 10.  
Alternatively, round up the calculated seam address to the next multiple of 10.  The reason for 
the +10 is that the rest of the formula gives the address of the newest record; to get the address of 
the oldest record, we must advance the address by one record’s worth of address space. 
 
Understanding Configuration Data 
The vast majority of the recorder’s configuration is stored in nonvolatile memory on the digital 
board.  This memory can be dumped with command 4, to provide a nearly-complete picture of 
the recorder configuration on power-up.  However, the recorder’s currently active configuration 
may be different from the saved configuration data; multiple commands are needed to retrieve 
the active configuration. 
 
Active Configuration Data 
The current configuration of the unit cannot be dumped in a single command.  Multiple 
commands are required to get a complete copy of the unit’s active configuration, and the 
commands must be issued before the unit is reset or shut off, which will cause the current 
configuration to be lost.  The required commands are: 
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Table 17.  AE Recorder Configuration Command List 
e  set/read FRAM position/loops (command 'S' modifies this if not armed or recording) 

L  set/read current data‐recording address in data memory (block and page) 

l 
set/read the current duration of the warmup delay, which happens prior to arm‐state 
recording 

M  set/read trigger enables 

m 
set/read trigger threshold enables (both these and the trigger enables from command M 
must be enabled to enable a trigger threshold) 

N  set/read overlap records (# of records stored in both FRAM and flash) 

n  set/read pages per trigger, max 0x40000 (204 records/page; 250k records/second normally)

o  set/read trigger high/low offsets from quiescent 

P  set/read power state (from power board) 

p 
get data/voltages from power board (see power board docs; valid selections are 1=power‐
up count, 2=power enable count, 4=capattery voltage, 5=battery voltage, 6=temperature) 

Q  set/read between‐record delay (acquisition frequency = 50 MHz/(167+this)) 

q  set/read trigger condition minimum durations 

s  get status ‐ current state, arming countdown, time spent waiting before last trigger, etc. 

t  set/read multi‐trigger enable 

V  set/read analog board reference/bias voltages 

Y  set/read analog channel offset values 

y  set/read analog channel gain values 

Z  set/read digital channel threshold voltage 

;  enable/disable automatic power‐off when recording is finished or end of flash is reached 

~  enable/disable 1Hz heartbeat signal output 

‐  get flash bad block list 

 
Nonvolatile Configuration Data 
There are five pages of 128-byte nonvolatile memory used to hold configuration data, each of 
which contains a different category of data.  Each page contains a single data structure, aligned 
to the start of the page; all bytes between the end of the structure and the end of the page are 
meaningless.  For the sake of forwards compatibility, though, all 640 bytes across all five pages 
are dumped by command 4. 
 
When the configuration memory is dumped, all the configuration data it contains is visible, 
though not very easy to read.  Perhaps the best thing to do is to put the data back into the 
structures in which it’s stored, using the following C code.  It starts with the definitions of the 
configuration data structures and ends with the code needed to interpret the dumped data in terms 
of those data structures. 
 
(Note that the processor in the recorder is little-endian; if you want to use this code on a big-
endian machine, reorder the bytes in the multi-byte fields accordingly.) 
 
// eNVM types 
typedef uint16_t temperature; 
typedef uint8_t flag; 
typedef uint16_t gain; 
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typedef uint16_t offset; 
 
// eNVM constants 
#define ENVM_PAGE_SIZE 128 
#define ARMSTRING_SIZE 32 
#define UNITLABEL_SIZE 32 
#define BADBLOCKS_MAXCOUNT 62 
#define TRIGGERS_MAXCOUNT 63 
 
// the structures contained in the eNVM pages 
 
// stuff that should be set once then never change 
typedef struct eNVM_consts { 
 uint16_t badBlockScanHasHappened; // set to 0xbadb when the flash has been scanned for 
bad blocks 
 // bad blocks go here.  How many can there be?  Data sheet says 40 blocks/LUN max can be 
invalid, and the chip contains 1 LUN. 
 uint16_t badBlocks[BADBLOCKS_MAXCOUNT]; // 128 bytes/eNVM page, and the rest of the 
struct uses 3 bytes; 125 remain.  Divide by 2 to get 62 array entries. 
 char unitAddress; // aka unit number.  For a multi-recorder setup, determines what 
address to listen to.  First command byte is address. 
} eNVM_consts; 
 
// mostly for maincontrol 
typedef struct eNVM_configuration { 
 char unitLabel[UNITLABEL_SIZE]; 
 uint32_t serialNumber; 
 
 uint32_t delayArmTimeOnStart_seconds; // this is for delay-arm-on-startup, not some sort 
of default 
 uint8_t armOnPower-up; // if this is set, we delay by warmupDelay seconds then ARM 
immediately 
 flag multipleRuns; // if this is set, allow multiple triggers 
 uint16_t warmupDelay; // number of seconds to pause for accelerometer warmup in a pseudo-
arm state before actually saving data 
 uint16_t sampleRate; // units of ksps; min 1, max 299.4 (if you want 300, 299.4 is an 
error of -0.2%); for human use only 
 uint16_t sampleDelayCycles; // cycles of delay between each record-taking; derived 
directly from sample rate, and actually used by fabric blocks 
 uint16_t postTriggerCollectTime; // units of seconds.  Max is 214, so this is a somewhat 
larger variable than necessary.  For humans only. 
 uint32_t postTriggerCollectPages; // directly corresponds to the value in mainCtl 
 uint32_t overlapRecords; // how many records are stored in both FRAM and flash 
 flag Power-downWhenDone; // whether to turn ourselves off when POWER-DOWN state is 
reached (if not, goto USER state) 
 char armOnPower-upString[ARMSTRING_SIZE]; // what armString gets set to when armOnPower-
up activates 
 flag outputHeartbeat; // whether to toggle the heartbeat output or just leave it low 
(such than an attached N-channel MOSFET doesn't conduct) 
} eNVM_configuration; 
 
typedef struct eNVM_triggerConfig { 
 // the entries in these arrays are ordered by channel index 
 uint16_t triggerLevel[NUM_ANALOG_CHANNELS]; // added/subtracted to quiescent measurement 
to get high/low trigger thresholds 
 uint16_t triggerWidth[NUM_ALL_CHANNELS]; // number of consecutive samples the input must 
satisfy the trigger condition 
 flag triggerEnables[NUM_ALL_CHANNELS]; // redundant with trigger directions, but user may 
prefer ability to retain trigger configuration while disabled 
 uint8_t triggerDirections[NUM_ALL_CHANNELS]; // high, low, both, or neither 
} eNVM_triggerConfig; 
 
typedef struct eNVM_armState { 
 uint32_t delayArmTimeUsed_seconds; // the value passed in with the "delay arm" command; 
requirement wants minutes, that's a job for the GUI 
 char armString[ARMSTRING_SIZE]; // aka "arming time stamp" or maybe "event description"; 
provided with arming command 
 temperature t1Temp_arm; // 't1' is the arming 'trigger', i.e. the arm command in whatever 
form it takes 
 uint16_t memoryOverwriteProtect; // memory protection must be disabled in the 
configuration utility, but this also gets written during arm 
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} eNVM_armState; 
 
// probably clear these out (or at least triggerCount) whenever arm-lock is set 
typedef struct eNVM_trigState { 
 temperature t2Temps_trigger[TRIGGERS_MAXCOUNT]; // 't2' is the trigger as we know it 
 uint16_t triggerCount; // triggers detected, thus also the number of valid entries in the 
above table; if greater than TRIGGERS_MAXCOUNT, all entries in the above table are valid 
} eNVM_trigState; 
 
// envmDump is a 640-byte buffer containing the output of command 4, converted from characters 
back to bytes 
 
eNVM_consts *ENVM_CONSTANTS_PTR = (eNVM_consts*)(envmDump); 
eNVM_configuration *ENVM_CONFIGURATION_PTR = (eNVM_configuration*)(envmDump + ENVM_PAGE_SIZE); 
eNVM_triggerConfig *ENVM_TRIGGERCONFIG_PTR = (eNVM_triggerConfig*)(envmDump + ENVM_PAGE_SIZE * 
2); 
eNVM_armState *ENVM_ARMSTATE_PTR = (eNVM_armState*)(envmDump + ENVM_PAGE_SIZE * 3); 
eNVM_trigState *ENVM_TRIGSTATE_PTR = (eNVM_trigState*)(envmDump + ENVM_PAGE_SIZE * 4); 
 
 
// at this point, you can access the contents of the structures like so: 
printf("Unit label: "); 
fwrite(ENVM_CONFIGURATION_PTR->unitLabel, 1, UNITLABEL_SIZE, stdout); 
printf("\n"); 
printf("Serial number: %u\n", ENVM_CONFIGURATION_PTR->serialNumber); 
 

 
Warning: The fields in the structures may be “optimized” by your compiler into a different 
sequence or packing.  It is technically possible to copy this code verbatim and have fields not be 
populated properly.  Should this happen, it would probably be simplest to parse out the 
individual fields one at a time from the data returned by command 4; the fields in each page 
dumped by that command will be in the order given above, each structure field in sequence from 
top to bottom. 
 
On-Board Instrumentation Support Electronics Design 
For earth penetrator applications, the AE Recorder modules require only a battery.  The module 
is complete with a power interface board to connect the battery when commanded.  For a sled 
track application that must be self-contained while also maintaining electrical isolation between 
the instrumentation and the outside world, additional support electronics are required to 
communicate with the system and manage the battery.  Three additional circuit boards handle 
these functions:  the 3A7001 Safe-State Monitor with protected electrical connections for battery 
maintenance and instrumentation status; 3A7002 External Fiber-Optic Interface to provide 
electrically-isolated communication and control; and the 3A7004 Battery Management System 
board. 
 
3A7001 Safe-State Monitor Board 
This simple board includes a 15-pin connection to a matching connector on the 3A7002 board, 
with schematic in Figure 31 and a blank board shown in Figure 32.  A circular, 10-pin Glenair 
803-005-7-10 socket connector with metal dust cap provides access to the necessary signals 
while still meeting isolation requirements.  Diodes D1 and D2 are bright LEDs providing 
redundant indication that the instrumentation is powered.  The remaining 9-pin connector 
supports two loops of serially-connected LEDs.  From one to six LEDs can be used in each 
string.  A 40mA drive from the 3A7002 board pulses the LEDs at a programmable rate to allow 
external synchronization of photometric equipment with the AE Recorder memory. 
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Figure 31.  3A7001-002 Safe-State Monitor Board Schematic 
 

 
Figure 32.  3A7001-002 Safe-State Monitor Board 
 
3A7002 External Fiber-Optic Interface Board 
Multi-mode fiber from the sled track connects to the test article through the 3A7002-003 
External Fiber-Optic Interface Board, which has two fiber photodiodes, four receivers, and two 
transmitters.  Multi-mode fibers show greater resistance to failure when exposed to the usually 
dust-filled environment of a sled track test.  The two fiber photodiodes provide redundant power-
on detectors, driving the gates of transistors to control application of battery power to the entire 
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system.  Two each of the four receiver fiber interfaces drive the Trigger input shared among all 
the AE Recorder module.  The other two fiber receivers are employed for the UART serial 
interface.  Both redundant serial interface receive signals are monitored by the board’s Microchip 
PIC24FJ64GB204 microcontroller.  If the microcontroller detects that the default channel does 
not have data while the back-up fiber does, communication is automatically switched to the 
active fiber for all the AE Recorders.  The two fiber transmitters handle the transmit part of the 
UART serial interface, and both redundant transmit fibers are always active.   
 

 
Figure 33.  Fiber-Optic and Microcontroller Schematic Portion of the 3A7002 Board 
 
In addition to monitoring the fiber-based serial communication, the microcontroller firmware 
also qualifies the power-on signal from the photodiode outputs.  The signal must remain asserted 
for more than one second to qualify powering the on-board instrumentation.  (This one-second 
qualification was omitted from the Impact 1 test firmware.)  Following detection, qualification, 
and latching power on, the 3A7002 waits for commands from the serial interface to power the 
AE Recorder modules.  Each recorder is powered using a separate command.  All of the fiber 
interface modules are shown in the top-level hierarchical schematic in Figure 33. 
 
Finally, the microcontroller also generates a “Blink” synchronization signal shared among all the 
AE Recorder modules and output to the 3A7001 Safe-State Monitor board.  This Blink signal 
will appear in each of the AE Recorder modules’ data, and when connected via the 3A7001 
board to an externally visible LED string, can also synchronize AE Recorder data with external 
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photometric measurements.  The period and duty cycle of the Blink signal is field-configurable 
using the serial command interface.   
 
The Blink feature was a late add-on for the previous test, Impact 1, and had some 
implementation flaws.  First, the frequency and period were fixed in the firmware without an 
ability to field configure.  This inflexibility made debugging and testing by the photometric crew 
more difficult.  And most importantly, the Blink signal was previously routed to Discrete signal 
inputs on each AE Recorder module, which required cable connections soldered during test 
article assembly.  In the revised hardware, this latter problem was corrected by a change to the 
AE Recorder that included an optional input signal in the 15-pin power and interface connector, 
the “Heart_Sync_n” signal shown in Figure 35.  This avoided the need for field connections 
because the signal was directly connected to the recorder.  The Discrete byte now includes 
Trigger, Blink Synchronization, and Discrete 1 through 6.  The signals are routed to the 3A7001 
Safe-State Monitor board from connector J12, shown in Figure 34.  Constant-current diodes limit 
power from the 16V Vreg_Pwr that is then applied to the interface.  Three, 18mA current-limit 
diodes in parallel drive the Blink LED strings to produce a bright photometric synchronization 
signal.   
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Figure 34.  Connections to the 3A7001 Safe-State Monitor Board 
 
Connections to the AE Recorder modules are shown in Figure 35.  Each recorder transmits data 
on a separate line, Rec_Tx1 through Rec_Tx4, with the signals combined on the 3A7002 board 
using the corresponding TX_En1 through TX_En4 signals.   
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Figure 35.  AE Recorder Connections from the 3A7002 Board 
 
Power on the 3A7002-003 External Fiber-Optic Interface Board is first stepped-down from the 
raw 36.5V maximum LiFePO4 battery voltage to 16V using the Switch-Mode Power Converter 
shown in Figure 36.  The 16V is distributed to all the AE Recorder modules to charge each 
recorder’s internal capattery.  Current draw for all four fully-powered AE Recorder modules plus 
the support electronics is about 650mA, well within the SMPC’s 2A capability.  This SMPC is 
about 80% efficient, so draws less than 0.5A from the 32V nominal battery.  Another SMPC, the 
same low-noise Linear Technology LTM8031 module used in the AE Recorders, steps down the 
16V to 5V for use by the fiber optics and microprocessor.   

 
Figure 36.  SMPC Produces 16V Power from the 32V Nominal Battery 
 
3A7004 Battery Management System 
Lithium-ion cells have the highest energy density by volume and weight, and were used in the 
AE Recorder on-board instrumentation system because the volume available for a battery was a 
design constraint.  The trade-off using a lower-density chemistry would have been shorter 
operating time and a requirement to top-off the battery immediately before the test.  However, if 
lithium chemistry cells are used outside their safe operating area, the cells can fail 
catastrophically by bursting into flames or exploding.  A critical factor in safe operation is 
ensuring cells are not over-charged, and to a lesser extent, over-discharged.  The Battery 
Management System board monitors cell voltages during charge, allowing microcontroller 
firmware to apply balancing loads to charge all cells to equal capacity without over-charging.  A 
fully-charged pack with all cells having balanced capacity also helps avoid over-discharge on 
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cells that might otherwise have received an incomplete charge.  The BMS disconnects the 
charger current when the pack is fully charged, and when the battery pack is tested following 
assembly, the BMS also disconnects the load during discharge cycling.  The load disconnect 
feature is disabled for test operations.  The BMS continuously reports cell data during charging 
using the fiber-optic serial interface on the 3A7002 board. 
 
The AE Recorder 32V nominal on-board instrumentation battery is composed of 10 each K2 
Energy LFP26650P80 cells, 2.6A-Hr nominal.  Since the instrumentation provides a 0.5A load, a 
fully-charged battery should operate the system for about 5 hours.  The very low self-discharge 
rate from LiFePO4 and the associated battery management system should allow recharging after 
test article assembly and check-out is complete and no further servicing for several months, 
however, since the recharging capability is readily available, the battery is topped off on the day 
of test.  During non-operational time, the battery management system is set to Sleep mode which 
draws about 0.1mA, equivalent to less than 5% self-discharge after one month. 
 
The 3A7004-002 Battery Management System board uses two Texas Instruments bq76PL536a 
BMS devices connected in series, with each chip monitoring 5 of the 10 cells.  The top level of 
the hierarchical schematic is shown in Figure 37.  Although the bq76PL536a battery 
management system chip gets power directly from the battery, the microcontroller and similar 
circuits on the 3A7004 board need 5V power.  This is provided from the 3A7002 External Fiber-
Optic Interface board.  Once the power-on photodiode is illuminated from the optical fiber, the 
3A7002 board is powered and in turn powers the 3A7004 board. 
 

 
Figure 37.  Battery Management System Hierarchical Schematic Top Level 
 
One problem encountered during the Impact 1 test article assembly was that the BMS was 
inadvertently left operating.  In Sleep mode the BMS consumes only 0.1mA, but when awake the 
power climbs to 12mA.  This can discharge the 2.6A-Hr battery in about nine days.  To make 
this condition detectable without exposing raw battery voltage outside the instrumentation, an 
Opto-MOS switch was incorporated in the design.  The nBMS_Awake signal is an open-drain 
output from a TLP3250 Opto-MOS transistor.  When in Sleep mode, the bq76PL536a chip 
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removes Reg50 power and the output will be open.  When the BMS is active, it will pull the 
signal to ground.  A resistance measurement between nBMS_Awake (labeled BMS AWAKE on 
the test article interface) and Return should show less than an Ohm or so when the BMS is 
active. 

 
Figure 38.  Battery Management System Sleep Monitor Circuit 
 
The assembled 3A7004 board with an MDM-21S harness installed is shown in Figure 39.  The 
10-cell battery pack is built with a mating MDM connector to attach individual cells to the 
balancing circuit and the main battery output and return.  Spacing between the circuit board edge 
and the battery pack housing is tight, so that a board-mounted MDM connector was useless.  
With no need to route all connections to a single point, a harness was used with wires connected 
close to their associated circuits, and only four board layers were needed. 

 
Figure 39.  3A7004-002 Battery Management System Board 
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The right half of the board has the bq76PL536a chips and the far right edge the balancing 
resistors.  The upper left quadrant holds the supervisory microcontroller, a Microchip 
PIC24FJ128GB204.  This is essentially the same microcontroller used on the AE Recorder’s 
3A6999 Power / Interface and 3A7000 Analog boards, except in a 44-pin package.  The USB 
connector near the microcontroller is helpful for firmware development.  The UART serial 
interface for reporting data during sled track operations connects through J2 to the matching 
connector J7 on the 3A7002 board.  The battery output and the 5V input appear on J3, which is 
shown on the bottom, left edge of the 3A7004 board.  The pin definition in J3 matches J5 on the 
3A7002 board, which is physically adjacent to the 3A7004 board.  
 

CONCLUSIONS 
All four Anomalous Environment Recorder modules installed in the B61-12 sled track test article 
successfully returned all data during the first use on a March 2016 test, Impact 1.  The design, 
with some minor updates based on this test experience, will form the on-board instrumentation 
for two subsequent rocket sled tests.  The AE Recorder also provides an expanded capability, 
high fidelity, robust data recorder for earth penetrator applications.   
 
This first use of a high-speed serial interface in penetrator instrumentation makes the extreme 
depth of memory practical, with data extraction time about the same as the recording time.  The 
combination of both FRAM and Flash non-volatile memory was effective to capture the required 
pre-trigger and post-trigger data. 
 
Shock levels may not have been high enough to qualify the design for earth penetrator 
applications; in particular the robustness of one component is of concern: the switch-mode power 
converter whose efficiency helped enable the long, 5-second operating time after external power 
loss and reduced power requirements by 50%.  However, since the AE Recorder uses proven 
shock-hardened mechanical design and encapsulation methods, the design is expected to handle 
earth penetrator shock levels including the high jerk. 
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APPENDIX A – ALPHABETICAL COMMAND LIST 
 

1 
print the entire contents of SRAM (4096 bytes), followed by a 4‐byte CRC checksum; only 
the first 4080 bytes contain record data 

2 
print a page of FRAM (4096 bytes), followed by a 4‐byte CRC checksum; the beginning of 
the page is not guaranteed to line up with the beginning of a record 

3 
print a page of flash (4182 bytes), followed by a 4‐byte CRC checksum; each group of 12 
records (one glob) is followed by 6 bytes of Reed‐Solomon error‐correcting code (ECC) 

4  print the raw contents of the eNVM configuration memory (640 bytes) 

A  arm the recorder immediately; the recorded arm delay is zero 

B  clear FRAM 

b  clear flash 

C  force trigger 

D  arm after a delay 

d  read current time until arming happens 

E 
re‐enable arming/data taking (clear the memory lock in eNVM) if not taking data or 
counting down a timer 

e  set/read FRAM position/loops (command 'S' modifies this if not armed or recording) 

F  dump FRAM page over SERDES (optional: dump N pages) 

f  force‐stop all delaying/arming operations; recording won't be stopped w/o reset (cmd R) 

G  dump flash page over SERDES (optional: dump N pages) 

g  dump the next page (FRAM or flash) over SERDES (optional: dump next N pages) 

H  put test patterns in FRAM (disabled if memory is locked) 

h  put test patterns in flash (disabled if memory is locked) 

I  send raw i2c data 

i  receive raw i2c data 

J  enter manual menus 

j  enable/disable debug messages 

K  retry the most recent SERDES dump from FRAM 

k  retry the most recent SERDES dump from flash 

L  set/read current data‐recording address in data memory (block and page) 

l 
set/read the current duration of the warmup delay, which happens prior to arm‐state 
recording 

M  set/read trigger enables 

m 
set/read trigger threshold enables (both these and the trigger enables from command M 
must be enabled to enable a trigger threshold) 

N  set/read overlap records (# of records stored in both FRAM and flash) 

n  set/read pages per trigger, max 0x40000 (204 records/page; 250k records/second normally)

O  set/read SERDES enable state 

o  set/read trigger high/low offsets from quiescent 

P  set/read power state (from power board) 

p 
get data/voltages from power board (see power board docs; valid selections are 1=power‐
up count, 2=power enable count, 4=capattery voltage, 5=battery voltage, 6=temperature) 
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Q  set/read between‐record delay (acquisition frequency = 50 MHz/(167+this)) 

q  set/read trigger condition minimum durations 

R  reset/reboot the microcontroller and flash 

S  read current voltages/inputs 

s  get status ‐ current state, arming countdown, time spent waiting before last trigger, etc. 

T  hardware test (verify connections to FRAM, flash) 

t  set/read multi‐trigger enable 

U  set/read unit serial number (9 digits max) 

u  set/read the description string of the unit 

V  set/read analog board reference/bias voltages 

v  set/read arm‐on‐power‐up 

W 
get current mode: U=User, D=Delay‐Arm, W=Warmup, F=Arm‐First, R=Recording, A=Arm‐
Again, P=Power‐down, L=Locked (can't arm, data present), O=other 

w  get unit identity and firmware revision 

X  save/revert configuration data to values stored in nonvolatile eNVM 

Y  set/read analog channel offset values 

y  set/read analog channel gain values 

Z  set/read digital channel threshold voltage 

z  read arm string 

;  enable/disable automatic power‐off when recording is finished or end of flash is reached 

~  enable/disable 1Hz heartbeat signal output 

+  set/read unit address; value is ASCII hex equivalent of address character, e.g. '1' = 0x31 

=  get number of usable flash pages (0x40000 if no bad blocks) 

_  get number of pages of recorded data (if 0, no data is present; if same as '=', flash is full) 

‐  get flash bad block list 
?  print a help message and enable input echo, for simpler direct human control 
/  disable input echo, for returning to program‐controlled operation after using command “?” 
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APPENDIX B – COMMAND LIST BY CATEGORY 
 
Collecting Data 
 
Preparing to Arm 

E 
re‐enable arming/data taking (clear the memory lock in eNVM) if not taking data or 
counting down a timer 

B  clear FRAM 

b  clear flash 

Arming 
A  arm the recorder immediately; the recorded arm delay is zero 

D  arm after a delay 

v  set/read arm‐on‐power‐up 

While arming or armed 
d  read current time until arming happens 

f 
force‐stop all delaying/arming operations; recording won't be stopped w/o reset 
(cmd R) 

C  force trigger 

 
 
Retrieving Data 
 
Via SERDES (quickly) 

F  dump FRAM page over SERDES (optional: dump N pages) 

G  dump flash page over SERDES (optional: dump N pages) 

g  dump the next page (FRAM or flash) over SERDES (optional: dump next N pages) 

K  retry the most recent SERDES dump from FRAM 

k  retry the most recent SERDES dump from flash 

O  set/read SERDES enable state 

Via serial (slowly) 

1 
print the entire contents of SRAM (4096 bytes), followed by a 4‐byte CRC checksum; 
only the first 4080 bytes contain record data 

2 
print a page of FRAM (4096 bytes), followed by a 4‐byte CRC checksum; the 
beginning of the page is not guaranteed to line up with the beginning of a record 

3 
print a page of flash (4182 bytes), followed by a 4‐byte CRC checksum; each group of 
12 records (one glob) is followed by 6 bytes of Reed‐Solomon error‐correcting code 
(ECC) 

4  print the raw contents of the eNVM configuration memory (640 bytes) 

 
 
Configuration 
Saving and reverting settings 

X  save/revert configuration data to values stored in nonvolatile eNVM 
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Recording 

l 
set/read the current duration of the warmup delay, which happens prior to arm‐
state recording 

N  set/read overlap records (# of records stored in both FRAM and flash) 

n 
set/read pages per trigger, max 0x40000 (204 records/page; 250k records/second 
normally) 

Q  set/read between‐record delay (acquisition frequency = 50 MHz/(167+this)) 

t  set/read multi‐trigger enable 

; 
enable/disable automatic power‐off when recording is finished or end of flash is 
reached 

Triggers 
M  set/read trigger enables 

m 
set/read trigger threshold enables (both these and the trigger enables from 
command M must be enabled to enable a trigger threshold) 

o  set/read trigger high/low offsets from quiescent 

q  set/read trigger condition minimum durations 

Analog board 
V  set/read analog board reference/bias voltages 

Y  set/read analog channel offset values 

y  set/read analog channel gain values 

Z  set/read digital channel threshold voltage 

Outputs 
~  enable/disable 1Hz heartbeat signal output 

Saving and reverting settings – again, because it’s important! 
X  save/revert configuration data to values stored in nonvolatile eNVM 

 
Diagnostics 

d  read current time until arming happens 

p 
get data/voltages from power board (see power board docs; valid selections are 
1=power‐up count, 2=power enable count, 4=capattery voltage, 5=battery voltage, 
6=temperature) 

S  read current voltages/inputs 

s 
get status ‐ current state, arming countdown, time spent waiting before last trigger, 
etc. 

T  hardware test (verify connections to FRAM, flash) 

W 
get current mode: U=User, D=Delay‐Arm, W=Warmup, F=Arm‐First, R=Recording, 
A=Arm‐Again, P=Power‐down, L=Locked (can't arm, data present), O=other 

w  get unit identity and firmware revision 

z  read arm string 

=  get number of usable flash pages (0x40000 if no bad blocks) 

_ 
get number of pages of recorded data (if 0, no data is present; if same as '=', flash is 
full) 

‐  get flash bad block list 
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Recorder Identity 

U  set/read unit serial number (9 digits max) 

u  set/read the description string of the unit 

w  get unit identity and firmware revision 

+ 
set/read unit address; value is ASCII hex equivalent of address character, e.g. '1' = 
0x31 

 
Power and Reset 

P  set/read power state (from power board) 

R  reset/reboot the microcontroller and flash 

 
Help and Manual Control 

?  print a help message and enable input echo, for simpler direct human control 

/ 
disable input echo, for returning to program‐controlled operation after using 
command “?” 

 
Advanced and Special Purpose 
Test patterns 

H  put test patterns in FRAM (disabled if memory is locked) 

h  put test patterns in flash (disabled if memory is locked) 

Elapsed time and address state manipulation 
e  set/read FRAM position/loops (command 'S' modifies this if not armed or recording) 

L  set/read current data‐recording address in data memory (block and page) 

Extra advanced 
I  send raw i2c data 

i  receive raw i2c data 

J  enter manual menus 

j  enable/disable debug messages 
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APPENDIX C – COMMAND DESCRIPTIONS IN DEPTH 
The format of each command and response contains zero or more fields, expressed with angle 
brackets as <field>.  If a command field is in brackets, like [<field>], it is optional.  If multiple 
fields are in the same set of brackets, like [<field1> <field2>], both must be present or absent 
together.  If a field is in parentheses with an asterisk, like (<field>)*, there may be zero, one, or 
more copies of the field, up to a command-specific maximum. 
 
Many commands can both read and write a configuration value.  In this case, there will generally 
be an optional field in the command, with a corresponding field in the response.  If the optional 
field is present, the configuration value is being written, and the response will be K if successful; 
if the optional field is absent, the configuration value is being read, and the response will be the 
same type as the optional field.  A few commands of this type, which read and write multiple 
values, have multiple optional fields and multiple response fields. 
 
Command descriptions which involve flash will refer to MAXPAGE.  This is the maximum 
valid page address in flash, and is one less than the response from command =: 

MAXPAGE = (response from command =) - 1 
The value of MAXPAGE may not be the same across multiple recorder units, as different units 
may have different numbers of bad blocks in their flash chips; if more blocks are bad, there will 
be fewer good pages in which to record data, so MAXPAGE will be less.  (The actual position of 
the bad blocks in the chip is invisible to the user; from the user’s perspective, bad blocks are 
nonexistent, and all good pages are at consecutive addresses from 0 to MAXPAGE.) 
 
Commands that require a channel index will use values from the right hand side of the table in 
the Channel Indexing section.  This will lead to a value of 0 referring to analog input 6, for 
example, which is very confusing if you don’t notice that the value is an internal channel index. 
 
Example command description 

c <mandatoryField> [<optionalField>] 

Command fields: 

mandatoryField: A field that must always be present. 

optionalField: A field that may or may not be present; its presence or absence will affect what 
the command does, usually whether the command reads or writes a configuration value. 

Response: <responseField> (if command argument not given) or K 

Response fields: 

responseField: A field in the response; will only be present if optionalField is absent, as stated in 
the parentheses above 

Whatever the command does will be explained here. 

This is a fake command, but it’s similar to the many commands of the “set/read” variety.  As 
such, mandatoryField would be some sort of address or other selector, and optionalField and 
responseField would both be of the same type.  In descriptions of this kind of command, 
optionalField and responseField will often have the same name, but they don’t here. 

A paragraph in italics at the end of the description, like this, will be present whenever the 
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command affects the configuration of the recorder.  The paragraph will tell you whether the 
command’s modifications are saved to nonvolatile memory immediately, or whether command X 
is required to save the changes.  See the Recorder Configuration section for more information. 

Examples:  

The entries in the Examples sections do not include an address character.  To send a command to 
a specific unit, put its address character immediately before the command character.  For 
example, to send command c to the unit with address “3”, the command line should begin with 
3c.  To send command c to all units, the command line should begin with 0c. 

 

c 12 abcd (write a value) 

K (the write was successful) 

 

c 17 (read a value) 

c156 (this is the value that was read) 

 
 

1 

Command fields: none 

Response: <sramData> <checksum> 

Response fields: 

sramData: 4096-byte hexadecimal value.  The entire current contents of the SRAM data 
buffer. 

checksum: 4-byte hexadecimal value.  The checksum of sramData using polynomial 
0x00210801. 

Dump the contents of SRAM over the serial link. 

The SRAM contains 204 raw records, which are described in the Understanding Recorded Data 
section.  The first 20 bytes are the first record, the next 20 bytes are the next record, and so on.  
Only the first 4080 bytes contain record data destined for flash, the rest is unused space. 

Examples:  

1 

2b9603b128440e1…(long)…091a72 23ff25b7 

 

 

2 [<framPage>] 

Command fields: 
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framPage: 1-byte hexadecimal value.  From 0 to 7f.  A page address in FRAM. 

Response: <framData> <checksum> 

Response fields: 

framData: 4096-byte hexadecimal value.  The contents of the given page of FRAM. 

checksum: 4-byte hexadecimal value.  The checksum of framData using polynomial 
0x00210801. 

Dump a page of FRAM over the serial link. 

The whole of FRAM contains 26214 records, which are described in the Understanding 
Recorded Data section.  An FRAM page (as dumped by this command) is not an integer multiple 
of the size of a record, so each page will contain at least one partial record.  This means that 
different FRAM pages will have different data alignments.  The intent is that all pages of FRAM 
should be dumped then reassembled in order, which will correctly restore the records that 
straddle page boundaries. 

The last 8 bytes of FRAM contain housekeeping data instead of record bytes.  The layout of this 
information is described in the Trigger housekeeping in FRAM section. 

Examples:  

2 

894e43ad22bce…(long)…72be24 c0dea233 

 

 

3 [<flashPage>] 

Command fields: 

flashPage: 3-byte hexadecimal value.  From 0 to MAXPAGE.  A page address in flash. 

Response: <flashData> <checksum> 

Response fields: 

flashData: 4182-byte hexadecimal value.  The contents of the given page of flash, including 
Reed-Solomon encoding bytes. 

checksum: 4-byte hexadecimal value.  The checksum of flashData using polynomial 
0x00210801. 

Dump a page of flash over the serial link. 

This command will only work if the unit is in USER mode, since the command requires exclusive 
control of flash.  In any other mode, the command will fail.  (Failure only happens if the unit is 
recording data, warming up, or waiting for a trigger, as the unit’s default state is USER mode.) 

Each page of data consists of 17 globs, each of which is 240 bytes of data (12 records) followed 
by 6 bytes of Reed-Solomon ECC.  The Reed-Solomon bytes are created by the recorder, but the 
recorder does not process them; responsibility for performing Reed-Solomon decoding is in the 
hands of the receiving computer. 
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The format of the records in the response is given in the Understanding Recorded Data section. 

Examples:  

3 

09576dd23a21c…(long)…0a4512 c1809aa3 

 

 

4 

Command fields: none 

Response: <configData> 

Response fields: 

configData: 640-byte hexadecimal value.  The contents of the digital board’s nonvolatile 
configuration memory. 

Dump the configuration memory over the serial link. 

Configuration memory consists of 5 128-byte pages containing little-endian data structures: 
consts, configuration, triggerConfig, armState, trigState in that order.  Each data structure has its 
own 128-byte page. 

The structure of this command’s response is more fully described in the Understanding 
Configuration Data section. 

Examples:  

4 

105b98d2ee7d5…(long)…326ca3 

 

 

A [<armString>] 

Command fields: 

armString: String, up to 32 bytes long.  Intended as an identifier for the current test.  If more than 
32 characters are given, the extras will be dropped.  Can be left blank; the stored string will still 
be replaced by the new one, i.e. a blank.  Any character other than backspace or newline can be 
included in the string. 

Response: K 

Response fields: none 

Arms the recorder as soon as possible. 

The warmup time must still elapse before the system is actually armed and looking for trigger 
conditions.  A value of zero is recorded for the arm delay. 
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Write access to flash by subsequent commands is immediately blocked, requiring E to clear. 

This command will fail if write access to flash has been blocked by a previous command. 

Examples:  

A Primary test 02Nov2016 10:17:33 

K 

 

A (blank arm string) 

K 

 

B 

Command fields: none 

Response: K 

Response fields: none 

Clear all data in FRAM. 

Unlike the similar flash-clearing command b, using this command is not required before taking 
new data, as FRAM does not need to be erased before it can be written to.  However, if data has 
been recorded, command E must be issued to unlock the flash before this command can be used. 

Examples:  

B 

K 

 

 

b [<flashPage>] 

Command fields: 

flashPage: Optional 3-byte hexadecimal value; a page address in flash.  From 0 to MAXPAGE.  
If the value entered is larger than MAXPAGE (available from command =), MAXPAGE is the 
value used. 

Response: K 

Response fields: none 

Clear some or all of the data in flash. 

If flashPage is provided, all blocks will be cleared up to and including the block containing that 
page.  If no argument is provided, the entire flash chip will be cleared.  In almost every case, 
the right thing to do is to use no arguments and clear all of flash. 
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This command will skip bad blocks, like all other flash-accessing commands. 

If data has been recorded, command E must be issued to unlock the flash before this command, 
or any other command that writes to flash, can be used. 

This command must be used to clear any existing data before new data can be safely recorded.  
After issuing command E it is possible to record new data, but the old data must also be cleared, 
or the new data and the old data will interfere and be unreadable.  (This is just the way flash 
memory works.) 

Examples:  

b (clear all of flash) 

K 

 

b 123cd (clear flash from block 0 through block 0x248, which is ceiling(0x123cd/0x80)) 

K 

 
 

C 

Command fields: none 

Response: K 

Response fields: none 

Manually trigger an armed recorder. 

This command only returns successfully if the recorder is armed (i.e. in mode Arm-First or Arm-
Again; see the Operating Modes section for an explanation of modes).  Otherwise this command 
will respond with the error “!”. 

Examples:  

C 

K 

 
 

D <delaySeconds> [<armString>] 

Command fields: 

delaySeconds: Decimal value.  From 0 to 999999999.  The number of seconds to delay arming. 

armString: String, up to 32 bytes long.  Intended as an identifier for the current test.  If more than 
32 characters are given, the extras will be dropped.  Can be left blank; the stored string will still 
be replaced by the new one, i.e. a blank.  Any character other than backspace or newline can be 
included in the string. 
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Response: K 

Response fields: none 

Arms the recorder after a given time delay. 

The delay time will be spent in a low-power mode, with the analog signal amplifiers and 
accelerometers off.  After the delay period ends, the warmup time must still elapse before the 
system is actually armed. 

Write access to flash by subsequent commands is immediately blocked, requiring E to clear. 

This command will fail if write access to flash has been blocked by a previous command. 

Examples:  

D 86400 Delayed test 03Nov2016 10:17:33 (delay for 24 hours) 

K 

 

D 1800 (delay for three minutes, blank arm string) 

K 

 
 

d 

Command fields: none 

Response: <secondsRemaining> 

Response fields: 

secondsRemaining: Decimal value.  The number of seconds until the current delay mode (Delay-
Arm or Warmup) is complete. 

Gets the amount of time remaining in the current delay mode (Delay-Arm or Warmup).  If the 
unit is not in a delay mode, this command returns zero. 

This command is often best preceded by W, to determine if the unit is currently in a delay mode.  
If the unit is not, there’s no point in using this command. 

Examples:  

d 

120 (two minutes left in current delay mode) 

 

d 

0 (less than a second left in current delay mode, or not in a delay mode) 

 
 

E 
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Command fields: none 

Response: K 

Response fields: none 

Enable write access to flash memory after data has been recorded. 

This is a safety feature, intended to prevent recorded data from being accidentally overwritten 
and lost.  Any time data is recorded (i.e. whenever the system enters an armed state, such as 
when command A is used or the Delay-Arm mode ends), arming and erasing is locked out until 
this command is issued. 

Don’t issue this command until you’re well and truly done with the contents of the recorder’s 
memory!  This command makes that information vulnerable to loss, and there is no easy way to 
re-enable the lockout. 

This command will fail if the recorder is armed, recording, or basically doing anything active or 
time-dependent.  Again, this is for the safety of the data being recorded (or soon to be recorded). 

Examples:  

E 

K 

 
 

e [<loops> <position>] 

Command fields: 

loops: 4-byte hexadecimal value.  From 0 to 0xfffff.  The large-scale current time since arming, 
expressed in the number of loops that position has made through FRAM address space. 

position: 4-byte hexadecimal value.  From 0 to 0x3ffff.  The small-scale current time since 
arming, expressed in the position in FRAM address space.  

Response: <loops> <position> (if command fields not given) or K 

Response fields: 

loops: 4-byte hexadecimal value.  The large-scale current time since arming, expressed in the 
number of loops that position has made through FRAM address space. 

position: 4-byte hexadecimal value.  The small-scale current time since arming, expressed in the 
position in FRAM address space. 

This command tells the user how long it’s been since the recorder was armed.  See the Time 
Reporting section for details, but the short version (assuming command Q returns the default 
value of 0x21) is: 

time_since_arm = (loops * 26214 + floor(position / 10)) * 4 microseconds 

The time can be changed manually, but doing so while taking data is likely to misalign the data 
subsequently recorded in FRAM, such that records would not be in the expected places.  (Such 
data would appear crazy at first glance, but coherent data would be recoverable by shifting the 
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downloaded FRAM data such that the stored records line up with their expected positions.) 

Command S will reset the values returned by this command if the recorder is not already armed 
or recording. 

Examples: 

e 

00000010 00038000 (recorder has been armed for 1.769444 seconds) 

 

e 

00000000 00000000 (recorder has most likely not been armed since power-up) 

 
 

F <framPage> [<dumpPages>] 

Command fields: 

framPage: 1-byte hexadecimal value; a page address in FRAM.  From 0 to 7f.  The page to start 
the dump. 

dumpPages: Optional 1-byte hexadecimal value.  From 1 to 0x80-framPage.  How many pages 
to dump.  Defaults to 1 if not specified. 

Response: K 

Response fields: none 

Dump FRAM data over SERDES. 

Each FRAM page is 4096 bytes; 0x80 of these make up the entirety of FRAM.  The data is 
Reed-Solomon encoded and padded before transmission to the controlling PC. 

An FRAM page does not contain an integer number of records, so not all FRAM pages will have 
the same data alignment.  The intent is that all of FRAM should be dumped then reassembled via 
concatenation.  The last 8 bytes of FRAM contain housekeeping data instead of record bytes. 

Examples:  

F 0 80 (dump all of FRAM) 

K 

 

F 3 (dump page 3 of FRAM) 

K 

 
 

f 
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Command fields: none 

Response: K 

Response fields: none 

Force-stop all delaying and arming operations, effectively stopping everything that’s happening 
in the background, and switch to USER mode.  This allows the user to return the unit to an 
inactive state without resetting it. 

This command fails if the unit is currently recording data (i.e. it has been triggered and is still 
recording); in this case, the only way to stop the unit is to reset it with command R. 

Examples:  

f 

K 

 
 

G <flashPage> [<dumpPages>] 

Command fields: 

flashPage: 3-byte hexadecimal value; a page address in flash.  From 0 to MAXPAGE.  The page 
to start the dump. 

dumpPages: Optional 3-byte hexadecimal value.  From 1 to MAXPAGE – flashPage + 1.  How 
many pages to dump.  Defaults to 1 if not specified. 

Response: K 

Response fields: none 

Dump flash data over SERDES. 

Each flash page is 4080 bytes prior to encoding.  The data is Reed-Solomon encoded before 
storage, and padded before transmission to the controlling PC. 

Examples:  

G 0 100 (dump the first 256 pages of flash) 

K 

 

G 7 (dump page 7 of flash) 

K 

 
 

g [<dumpPages>] 

Command fields: 
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dumpPages: Optional 3-byte hexadecimal value.  How many pages to dump.  Valid range 
depends on how many pages are left in the most recently dumped memory.  Defaults to 1 if not 
specified. 

Response: K 

Response fields: none 

Continue the most recent data dump over SERDES.  Can continue both FRAM and flash dumps. 

If the most recent page dumped was page 4 of FRAM, g will dump FRAM starting at page 5.  If 
the most recent page dumped was page 621 of flash, g will dump flash starting at page 622.   

Examples:  

F 20 (dump FRAM page 0x20) 

K 

g (dump FRAM page 0x21) 

K 

 

G 0 40 (dump the first 0x40 pages of flash) 

K 

g 40 (dump the second 0x40 pages of flash) 

K 

g 40 (dump the third 0x40 pages of flash) 

K 

 
 

H 

Command fields: none 

Response: K 

Response fields: none 

Store a test pattern in FRAM.  This stores 20 bytes of data at the front of FRAM. 

This command fails if data has been recorded and E has not been issued. 

Examples:  

H 

K 

 
 

h 
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Command fields: none 

Response: K 

Response fields: none 

Store a test pattern in flash.  This stores one page of data at the front of flash.  The test data 
contains two intentional byte errors in the second 246-byte glob to test the Reed-Solomon 
correction of the data interpretation software. 

This command fails if data has been recorded and E has not been issued. 

Erasing the flash is not part of this command; if the flash is not erased first, the data written by 
this command will interfere with the existing data and make a mess of both pages of data. 

Examples:  

h 

K 

 
 

I <iicAddress> (<data>)* 

Command fields: 

iicAddress: 1-byte hexadecimal value.  An address on the I2C bus. 

data: Up to 64 bytes of hexadecimal data.  The bytes are individually parsed, so 00120004, 00 
12 00 04, and 0 12 0 4 are equivalent. 

Response: K 

Response fields: none 

Send raw data over the I2C bus.  Best used together with additional documentation! 

Examples:  

I 13 53 (turn off power board output) 

K 

 
 

i <iicAddress> <dataSize> 

Command fields: 

iicAddress: 1-byte hexadecimal value.  An address on the I2C bus. 

dataSize: 1-byte hexadecimal value.  How many bytes to receive from the given address.  
Maximum is 0x40. 

Response: (<byte>)* 
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Response fields: 

byte: 1-byte hexadecimal value.  A byte retrieved from the given address.  Every byte is 
followed by a space, even the last one. 

Receive raw data over the I2C bus.  Best used in conjunction with additional documentation! 

Examples:  

i 13 1 (get power board output state) 

01  (power is enabled) 

 

i 16 2 (get power board temperature) 

08 61  (25 degrees C) 

 
 

J 

Command fields: none 

Response: (menu is printed) 

Response fields: none 

Enter the debug menu.  This provides low-level access to the data stored in memory, various 
configuration and status values, and other sorts of things you’d expect in a debug menu. 

As the debug menu was intended for use by humans, its input and response formats often differ 
from those of regular commands.  Backspace won’t work, but pressing the Escape key will 
usually clear an entered decimal or hexadecimal value. 

This is the only means available of reading the contents of flash blocks in the bad block list. 

Examples:  

J 

 

 c ‐ Analog board tests 

 p ‐ Power board tests 

 f ‐ FRAM tests 

 l ‐ Flash tests 

 s ‐ SRAM tests 

 t ‐ triggering tests 

 T ‐ timer tests 

 i ‐ i2c tests 

 m ‐ misc other tests 
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 a ‐ auto self‐test (not implemented) 

 W ‐ watchdog disable 

 x ‐ Exit 

  Press a key: 

 
 

j [<debugEnable>] 

Command fields: 

debugEnable: 1-byte hexadecimal value.  Whether to disable (if 0) or enable (any other value) 
the printing of debug messages. 

Response: <debugEnable> (if command argument not given) or K 

Response fields: 

debugEnable: 1-byte hexadecimal value.  Current value of the debug message printing flag. 

Enables and disables the printing of debug messages. 

Likely to provide more information (and more inscrutable information) than you truly desire, 
particularly when the recorder is armed or recording data. 

Changes to this setting cannot be saved in nonvolatile memory; it is always disabled on reset. 

Examples:  

j 

00 (debug messages are disabled) 

 

j 1 (enable debug messages) 

K 

 
 

K 

Command fields: none 

Response: K 

Response fields: none 

Repeat the most recent SERDES dump from FRAM.  The starting page and number of pages 
will be the same. 

This will repeat dumps from F, g, or K itself.  It is intended for cases in which Reed-Solomon 
error correction or the CRC checksum reveals too many errors in transit, to provide a simple way 
to retry a failed dump operation. 
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Examples:  

K 

K 

 
 

k 

Command fields: none 

Response: K 

Response fields: none 

Repeat the most recent SERDES dump from flash.  The starting page and number of pages will 
be the same. 

This will repeat dumps from G, g, or k itself.  It is intended for cases in which Reed-Solomon 
error correction or the CRC checksum reveals too many errors in transit, to provide a simple way 
to retry a failed dump operation. 

Examples:  

k 

K 

 
 

L [<blockAddress> <pageAddress>] 

Command fields: 

blockAddress: 2-byte hexadecimal value.  From 0 to 7ff.  Block address in flash. 

pageAddress: 1-byte hexadecimal value.  From 0 to 7f.  Page address in flash. 

Response: <currentBlock> <currentPage> (if command arguments not given) or K 

Response fields: 

currentBlock: 2-byte hexadecimal value.  From 0 to 7ff.  Current block address in flash. 

currentPage: 1-byte hexadecimal value.  From 0 to 7f.  Current page address in flash. 

Reads and writes the block and page addresses in flash where data will be stored next. 

Only fully functional while data is not being taken (i.e. not armed or recording; mostly USER 
mode); in all other circumstances only the block address will be updated.  This prevents anything 
from being stored in the period between the block address change and the page address change. 

Useful for determining where the most recent recording session ended and for shifting the 
location where the next session’s data will be stored, for example in a multi-trigger scenario.  
Since these flash addresses are zeroed when the recorder is armed (specifically, when the 
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warmup period expires), this command must be issued after that event. 

Examples:  

L 

0012 00 

 

L 400 0 (store the next data halfway through flash) 

K 

 
 

l [<warmupSeconds>] 

Command fields: 

warmupSeconds: Decimal value.  From 1 to 999.  Warmup period in seconds. 

Response: <warmupSeconds> (if command argument not given) or K 

Response fields: 

warmupSeconds: Decimal value.  Current warmup period in seconds. 

Reads and writes the number of seconds spent warming up the accelerometers after the recorder 
is armed. 

The recorder will only store data and respond to trigger conditions after this warmup time has 
elapsed. 

Changes to this setting are immediately saved in nonvolatile memory. 

Examples:  

l 

120 (two minutes of warmup time) 

 

l 5 (warm up for 5 seconds next time the unit is armed) 

K 

 
 

M [<triggerEnableFlags>] 

Command fields: 

triggerEnableFlags: 3-byte hexadecimal value.  Each bit corresponds to a channel; the channel is 
enabled as a trigger source if the bit is set, and disabled as a trigger source if not. 

For each of the three bytes making up this value, add up the bit values corresponding to the 
desired channels in the table below to get the value to enter. 
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Response: <triggerEnableFlags> (if command argument not given) or K 

Response fields: 

triggerEnableFlags: 3-byte hexadecimal value.  Each bit corresponds to a channel; the channel is 
enabled as a trigger source if the bit is set, and disabled as a trigger source if not. 

Reads and writes the trigger enable flags for all input channels. 

The format for the 3-byte values is given in the table below.  Each bit has a corresponding input 
channel, which is enabled when the bit is 1 and disabled when the bit is 0. 

Bit value  0x80  0x40  0x20  0x10  0x08  0x04  0x02  0x01 

1st byte (xx____)  ‐‐  ‐‐  ‐‐  ‐‐ 
trig_
fidu_n 

heart_ 
sync_n 

bilevel 6  bilevel 5

2nd byte (__xx__)  bilevel 4  bilevel 3  bilevel 2 bilevel 1 analog 7 analog 8  analog 9  analog 11

3rd byte (____xx)  analog 10  analog 12 analog 1 analog 2 analog 3 analog 5  analog 4  analog 6

Note that each channel’s corresponding bit in the 3-byte value is equal to 0x000001 left-shifted 
by the channel’s index.  (Channel indices are given in the table in the Channel Indexing section.) 

The manual trigger (command C) is not in the table because it is always enabled. 

This command does not modify nonvolatile memory.  To save any changes made to these 
settings, use command X. 

Examples:  

M 

0bf001 (fiducial input 8 (trig_fidu_n), all bilevel inputs, and analog input 6 are trigger-
enabled)  

 

M 041fc0 (enable triggering on fiducial input 7 (heart_sync_n), bilevel input 1, and analog 
inputs 7 through 12) 

K 

 
 

m [<lowTriggerFlags> <highTriggerFlags>] 

Command fields: 

lowTriggerFlags: 3-byte hexadecimal value.  Each bit corresponds to a channel; if the bit is set, 
the channel can cause a trigger when its low threshold is satisfied. 

highTriggerFlags: 3-byte hexadecimal value.  Each bit corresponds to a channel; if the bit is set, 
the channel can cause a trigger when its high threshold is satisfied. 

For each of the three bytes making up the values, add up the bit values corresponding to the 
desired channels in the table below to get the value to enter. 

Response: <lowTriggerFlags> <highTriggerFlags> (if command arguments not given) or K 
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Response fields: 

lowTriggerFlags: 3-byte hexadecimal value.  Each bit corresponds to a channel; if the bit is set, 
the channel can cause a trigger when its low threshold is satisfied. 

highTriggerFlags: 3-byte hexadecimal value.  Each bit corresponds to a channel; if the bit is set, 
the channel can cause a trigger when its high threshold is satisfied. 

Reads and writes the low and high threshold enable flags for all input channels. 

Each channel has a low threshold and a high threshold, which can be enabled independently of 
each other.  A threshold must be enabled and satisfied to cause a trigger event. 

 For analog channels, the low and high thresholds are (quiescent value – trigger offset) and 
(quiescent value + trigger offset); the quiescent value is a running average of recent 

measurements, and the trigger offset is set with command o.  If the input value goes below the 
low threshold or above the high threshold, the threshold is satisfied. 

 For bilevel and fiducial channels, the low threshold is satisfied when the input is low, and the 
high threshold is satisfied when the input is high.  As such, enabling both thresholds for a digital 
input means the channel’s trigger condition will always be satisfied. 

The threshold enable flags are independent of the channel’s trigger enable flag.  However, if the 
channel’s trigger enable flag is disabled, the channel cannot cause a trigger regardless of any 
thresholds being enabled.  (This allows each channel to be enabled and disabled as a trigger 
source without having to reconfigure which thresholds should be enabled every time.) 

The format for the 3-byte values is given in the table below.  Each bit has a corresponding input 
channel, which is threshold-enabled when the bit is 1 and disabled when the bit is 0. 

Bit value  0x80  0x40  0x20  0x10  0x08  0x04  0x02  0x01 

1st byte (xx____)  ‐‐  ‐‐  ‐‐  ‐‐ 
trig_
fidu_n 

heart_ 
sync_n 

bilevel 6  bilevel 5

2nd byte (__xx__)  bilevel 4  bilevel 3  bilevel 2 bilevel 1 analog 7 analog 8  analog 9  analog 11

3rd byte (____xx)  analog 10  analog 12 analog 1 analog 2 analog 3 analog 5  analog 4  analog 6

Note that each channel’s corresponding bit in the 3-byte value is equal to 0x000001 left-shifted 
by the channel’s index.  (Channel indices are given in the table in the Channel Indexing section.) 

The manual trigger (command C) is not in the table because it is always enabled. 

This command does not modify nonvolatile memory.  To save any changes made to these 
settings, use command X. 

Examples:  

m 

0bf001 000231 (fiducial input 8 (trig_fidu_n), all bilevel inputs, and analog input 6 have low 
thresholds enabled, and analog inputs 9, 1, 2, and 6 have high thresholds enabled) 

 

m 041fc0 7 (enable low threshold on fiducial input 7 (heart_sync_n), bilevel input 1, and 
analog inputs 7 through 12, and enable high threshold on analog inputs 5, 4, and 6) 

K 
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N [<overlapRecords>] 

Command fields: 

overlapRecords: 2-byte hexadecimal value.  From 0 to 1fff.  The minimum number of records of 
data stored in both FRAM and flash. 

Response: <overlapRecords> (if command argument not given) or K 

Response fields: 

overlapRecords: 2-byte hexadecimal value.  The current minimum number of records of data 
stored in both FRAM and flash. 

Reads and writes the number of records intentionally stored in both FRAM and flash, to provide 
observable continuity between the data stored in the two memories. 

Because the flash data is buffered in SRAM even before a trigger, on average there will be half a 
page (102 records) of data stored in both FRAM and flash even if overlapRecords is set to zero.  
However, the size of this innate overlap is determined by the timing of the trigger relative to 
SRAM wraparound, and may be as low as one record.  The value set for overlapRecords is in 
addition to the innate overlap – in other words, overlapRecords sets the absolute minimum 
number of overlapping records between the two memories, but there will probably be more. 

The additional overlapping of records provided by overlapRecords comes at the expense of data 
stored in FRAM.  The given number of records will be stored in FRAM’s circular buffer 
following the trigger, overwriting the oldest data there.  Be sure not to set overlapRecords so 
high that the FRAM doesn’t save the amount of pre-trigger data that you require!  

This command does not modify nonvolatile memory.  To save any changes made to these 
settings, use command X. 

Examples:  

N 

0010 (sixteen records minimum of overlap) 

 

N 5 (set minimum overlap to 5 records) 

K 

 
 

n [<pagesPerTrigger>] 

Command fields: 

pagesPerTrigger: 3-byte hexadecimal value.  From 0 to (MAXPAGE + 1), i.e. the value returned 
by command =.  The number of pages of data recorded in flash per trigger. 
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Response: <pagesPerTrigger> <secondsPerTrigger> (if command argument not given) or K 

Response fields: 

pagesPerTrigger: 4-byte hexadecimal value.  The current number of pages of data recorded in 
flash per trigger. 

secondsPerTrigger: decimal value.  The current number of seconds spent recording per trigger, 
rounded down to the nearest second. 

Reads and writes the number of pages of data stored in flash every time the unit is triggered. 

The maximum value of pagesPerTrigger is the value returned by command =. 

Each page is 204 records; that’s 816 microseconds of recording per page if the between-record 
delay (command Q) is set to the default of 0x21. 

This command does not modify nonvolatile memory.  To save any changes made to these 
settings, use command X. 

Examples:  

n 

002fdf (12255 pages, which is about ten seconds by default, recorded per trigger) 

 

n 20000 (record half the flash per trigger; about 107 seconds by default) 

K 

 
 

O [<SerDesEnable>] 

Command fields: 

SerDesEnable: 1-byte hexadecimal value.  Whether to disable (if 0) or enable (any other value) 
SERDES output. 

Response: <SerDesEnable> (if command argument not given) or K 

Response fields: 

SerDesEnable: 1-byte hexadecimal value.  Current value of the SERDES output enable flag. 

Enables and disables the SERDES high-speed serial output. 

The SERDES output is automatically enabled when it’s used by a command, i.e. when 
commands F, G, g, K, and k use it to dump data.  It isn’t automatically disabled by anything, so 
after it’s used for something it’ll just keep pumping out the sync pattern “1111100000” at 150 
million bits/second.  When SERDES is disabled, the output is a constant “1”. 

The user is not expected to use this command.  Esoteric use cases presumably exist; for example, 
the user might want to minimize the number of changing signal pins, or the user might want to 
measure the clock rate of the SERDES signal or the FPGA itself (it’s 1/3 the SERDES bit rate). 

The status of SerDesEnable is not saved; SERDES is always disabled on startup but, as 



  97 

mentioned above, it’s enabled whenever necessary. 

Examples:  

O  

01 (SERDES output is enabled) 

 

O 0 (disable SERDES output) 

K 

 
 

o <channel> [<thresholdOffset>] 

Command fields: 

channel: 1-byte hexadecimal internal index of an analog channel, from 0 to 0xb (decimal 11).  
Channel indexes are explained in the Channel Indexing section. 

thresholdOffset: 2-byte hexadecimal value.  From 0 to fff.  (Values up to ffff are accepted, but 
there’s no point.)  The offset of the trigger thresholds from the quiescent measured value of the 
channel. 

Response: <thresholdOffset> (if command argument not given) or K 

Response fields: 

thresholdOffset: 2-byte hexadecimal value.  The offset of the trigger thresholds from the 
quiescent measured value of the channel. 

Reads or writes the value separation between a channel’s quiescent value and the high and low 
thresholds for that channel.  An analog channel’s measured value must be above or below the 
quiescent value by at least this much to cause a trigger. 

The thresholdOffset value is in units of ADC counts, which is the unit of measure reported by 
command S and stored during data recording. 

An analog channel’s measured value ranges from 0 to fff, and any computed threshold 
(quiescent value +/– thresholdOffset) exceeding that range is clamped to those limits – no 
threshold can be less than 0 or greater than fff.  Since an input value must exceed a threshold to 
trigger it, a value of thresholdOffset greater than or equal to fff means that the channel’s 
thresholds can never be satisfied. 

This command does not modify nonvolatile memory.  To save any changes made to these 
settings, use command X. 

Examples:  

Z 2 42 (set threshold for internal channel index 2 (analog input 5)) 

K 

 

Z b (read threshold for internal channel index 11 (analog input 7)) 
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01c0 

 
 

P [<powerState>] 

Command fields: 

powerState: 1-byte hexadecimal value.  Whether to disable (if 0) or enable (any other value) the 
output from the power board within the unit. 

Response: <powerState> (if command argument not given) or K 

Response fields: 

powerState: 1-byte hexadecimal value.  Current state of the power board output. 

Enables and disables the power output of the recorder’s power board. 

If power output is disabled, the recorder is powered off, and will naturally not respond to any 
further commands. 

Examples:  

P 

01 (power is enabled) 

 

P 0 (disable power board output) 

K (or potentially no response, as the power was just cut)
 
 

p <powerDataSelect> 

Command fields: 

powerDataSelect: 1-byte hexadecimal value.  Which value to retrieve from the recorder’s power 
board.  Can take any of the following values: 1, 2, 4, 5, 6. 

Response: <powerData> 

Response fields: 

powerData: 2-byte hexadecimal value.  The value retrieved from the power board. 

Gets data or voltages from the power board within the unit.  The values available are: 

powerDataSelect  Value  Interpretation 

1  Initialization count  Times power has been applied to unit 

2  Power enabled count  Times power has been enabled 
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4  Capattery voltage  X
X

Vcap  0020203.0
495

 

5  Battery voltage  X
X

Vbat  0020203.0
495

 

6  Temperature  41.20020553.0  XT  (deg. C) 

(To sate your curiosity: Option 3 is what command P uses.  It’s different from the others.) 

Some sample temperature value conversions: 

Value  Temperature 

0x0014 
(20) 

‐20°C 

0x03E1 
(993) 

0°C 

0x07AE 
(1966) 

20°C 

0x08A1 
(2209) 

25°C 

0x16E3 
(5859) 

100°C 

 

Examples:  

p 2 (times power has been enabled) 

002b 

 

p 6 (temperature) 

07b0 (a bit over 20°C) 
 
 

Q [<betweenRecordDelay>] 

Command fields: 

betweenRecordDelay: 2-byte hexadecimal value.  From 0 to ffff.  The number of processor 
cycles to pause between the end of one record’s acquire-and-store operation and the beginning of 
the next record’s acquire-and-store operation. 

Response: <betweenRecordDelay> (if command argument not given) or K 

Response fields: 

betweenRecordDelay: 2-byte hexadecimal value.  The number of processor cycles to pause 
between the end of one record’s acquire-and-store operation and the beginning of the next 
record’s acquire-and-store operation. 

Reads and writes the length of the pause between record acquisition cycles.  This determines the 
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sampling rate of the recorder. 

An explanation of this command’s effect on the sampling rate can be found in the Time 
Reporting section.  The short version is that, for a sampling rate of 250,000 samples per second, 
leave betweenRecordDelay set to its default of 0x21.  The maximum recording rate, with a 
betweenRecordDelay of zero, should work fine but hasn’t been rigorously tested. 

The following table contains some example betweenRecordDelay values, with their effects: 

betweenRecordDelay  Cycles/sample  us/sample  Sampling rate (ksps) 

C2A9 (49833)  50000  1000  1 
12E1 (4833)  5000  100  10 
0341 (833)  1000  20  50 
014D (333)  500  10  100 
0053 (83)  250  5  200 
0021 (33)  200  4  250 
0000 (0)  167  3.34  299.4 
brd  brd + 167  (brd + 167) / 50  50000 / (brd + 167) 

 

This command does not modify nonvolatile memory.  To save any changes made to these 
settings, use command X. 

Examples:  

Q 

0021 (default, 250,000 samples per second) 

 

Q 0 (maximum sampling rate, about 299,400 samples per second) 

K 

 
 

q <channel> [<triggerMinCount>] 

Command fields: 

channel: 1-byte hexadecimal internal index of an input channel, from 0 to 0x13 (decimal 19).  
Channel indexes are explained in the Channel Indexing section. 

triggerMinCount: 2-byte hexadecimal value.  From 0 to ffff.  The minimum number of 
consecutive threshold-satisfying records needed to cause a trigger on the given channel. 

Response: <triggerMinCount> (if command argument not given) or K 

Response fields: 

triggerMinCount: 2-byte hexadecimal value.  The minimum number of consecutive threshold-
satisfying records needed to cause a trigger on the given channel. 

Read or write the minimum number of consecutive threshold-satisfying records needed for a 
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channel to cause a trigger.  Any non-threshold-satisfying record will restart the count from zero. 

Setting a channel’s triggerMinCount to 0 or 1 will cause a trigger during the first record that 
satisfies an enabled threshold on that channel. 

This command does not modify nonvolatile memory.  To save any changes made to these 
settings, use command X. 

Examples:  

q c 5 (require 5 consecutive threshold-satisfying records to trigger on digital input 1) 

K 

 

q 4 (read requirement for analog input 2) 

0012 (eighteen consecutive threshold-satisfying records required) 

 
 

R 

Command fields: none 

Response: K 

Response fields: none 

Reset the recorder’s microcontroller, FPGA fabric elements, and flash chip. 

This resets most settings to their saved values.  The settings of the analog boards, which are set 
by commands V, Y, y, and Z, are not reset. 

Examples:  

R 

K 

(reset takes effect) 

Hello, world! 

(etc.) 

 
 

S 

Command fields: none 

Response: <analogVals> <digitalVals> <internalAnalogVals> 

Response fields: 

analogVals: 12 separate 2-byte hexadecimal fields.  The current measurements of the analog 
inputs, sorted by ascending channel index. 
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digitalVals: 8 separate 1-byte hexadecimal fields.  Each field contains the current value of a 
single bilevel or fiducial input, sorted by ascending channel index.  Either 00 or 01. 

internalAnalogVals: 2 separate 2-byte hexadecimal fields.  The current measurements of Vcap 
and Vbat (capattery and battery voltages) according to the SmartFusion’s internal ADCs. 

 
This table shows how the response fields correspond to channel indexes, analog/bilevel/fiducal 
inputs, and internal voltages.  The top row is the response from the example S command. 
S resp. 0b38 08a9 0b8c 094d 09b4 0b06 0ac7 0a09 0af5 0b2a 0974 0b71 00 00 00 00 00 00  01  01  0450 0445

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Vcap Vbat

Input a6 a4 a5 a3 a2 a1 a12 a10 a11 a9 a8 a7 b1 b2 b3 b4 b5 b6 f7 f8 Vcap Vbat
 

Measure the current values of all inputs, as taken directly from the various ADCs and input pins.  
The analog inputs’ values are reported in units of ADC counts. 

This command will return wrong analog channel values during Delay-Arm mode, as the 
analog signal amplifiers and accelerometers are shut down during the delay.  Bilevel channel 
values may also be incorrect during Delay-Arm; although the comparators are not shut down, 
the DACs that generate the threshold voltages (as set by command Z) are shut down. 

If the unit is already taking data, the values will be skimmed from the running collection process. 
If not, the unit will be momentarily armed to collect data.  (This doesn’t affect the contents of 
FRAM or flash memory, and doesn’t lock access to flash the way normal arming does.  It does, 
however, clear the current FRAM address (which is returned by command e).) 

Examples:  

S 

0b38 08a9 0b8c 094d 09b4 0b06 0ac7 0a09 0af5 0b2a 0974 0b71 00 00 00 00 00 00 01 01 0450 
0445 

 
 

s 

Command fields: none 

Response: <status> 

Response fields: 

status:  A string containing the unit’s status.  It consists of several sub-fields separated from 
each other by two spaces, each of which begins with one of the following: 

Subfield Header  Subfield Contents 

UNIT 
LABEL: 

Unit’s label (as set by command u), padded to 32 bytes with \0 chars. 

S/N:  Unit’s serial number (as set by command U). 

MODE:  The current operating mode. 
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SUBMOD
E: 

The current operating submode.  Same as command W. 

STATUS: 
Whether a timer is counting down, and if so, its time remaining (as 
returned by command d) and the purpose of the countdown 

DATA: 
Whether arming is allowed, and if not, whether and when a trigger 
happened in the stored data 

ARM 
STRING: 

The arm string specified as part of the most recent arm command.  Same 
as command z. 

PAGES 
RECORDE
D: 

The number of pages of data recorded in the flash.  Only checks that the 
data is present, not whether it’s valid.  Same as command _.  This 
subfield is only present when the unit is in USER mode. 

PAGES 
FUNCTIO
NAL: 

The number of flash memory pages that can hold data (i.e. not part of 
bad blocks).  Same as command =. 

BAD 
BLOCKS: 

The number of bad blocks present in the bad block table (and thus, 
presumably, in flash).  Same as the first response field of command ‐. 

UNIT 
ADDRESS: 

The address of the current unit.  Expressed as a hexadecimal value (as in 
command +).  If the address is a printable character, the hexadecimal 
value will be followed by the corresponding character, e.g. “42 (B)” 

VERSION:  Version (“VER”) and compilation date (“COMP”) of the unit’s firmware 

DONE  (Nothing, “DONE” is the end of the response) 
 

Read the high-level status of the unit in a single string. 

For more information about modes, see the Operating Modes section. 

The unit label and arm string are padded to 32 bytes with null bytes, which makes printing the 
full output of this command (as well as u, w, and z) more tricky.  Using printf("%s") will end the 
printing when the nulls start; one alternative is fwrite(), which can make sure that all the 
characters get printed. 

Examples:  

s 

UNIT LABEL: AER‐006 Hangar Queen              S/N: 6  MODE: ARM_FIRST  SUBMODE: W  
STATUS: Warming up, seconds left: 3  DATA: Data present, cannot arm; untriggered  
ARM STRING: initial demo                       PAGES RECORDED: 00000000  PAGES 
FUNCTIONAL: 00040000  BAD BLOCKS: 00  UNIT ADDRESS: 48 (H)  VERSION: 
VER_2014_Jun 14 2016_COMP_Jun 14 2016 17:10:57  DONE 

 

s 
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UNIT LABEL: AER‐006 Hangar Queen              S/N: 6  MODE: USER  SUBMODE: L  STATUS: 
Timer idle  DATA: Data present, cannot arm; trigger occurred at T_arm + 1.983872 
seconds  ARM STRING: sec delay test                    PAGES RECORDED: 00000014  PAGES 
FUNCTIONAL: 00040000  BAD BLOCKS: 00  UNIT ADDRESS: 36 (6)  VERSION: 
VER_2014_Jun 14 2016_COMP_Jun 14 2016 17:10:57  DONE 

 
 

T [<verboseMode>] 

Command fields: 

verboseMode: 1-byte hexadecimal value.  Whether to disable (if 0) or enable (any other value) 
verbose output.  Defaults to disabled if not given. 

Response: [<verboseStuff>] <resultCode> <testResult> 

Response fields: 

verboseStuff: A string containing individual errors as they are discovered.  May contain 
newlines, which complicates parsing when verbose mode is enabled.  Only contains information 
about FRAM errors. 

resultCode: 1-byte hexadecimal value.  Zero if all tests were successful.  Bits that are set 
correspond to tests that failed or couldn’t be run. 

testResult: A string containing an explanation of the resultCode value. 

Runs a self-test of the hardware connections to the FRAM and flash memory chips. 

FRAM communication is tested in more depth than flash.  When verbose mode is enabled, this 
command will try to determine which FRAM data/address lines are disconnected.  A control line 
being disconnected could cause many data/address lines to be reported as bad. 

Bits set in resultCode indicate various errors: 

Bit value  Meaning 

0x00  No errors 

0x01  FRAM test 1 failed 

0x02  Flash test failed 

0x04  FRAM test 2 failed 

0x80  Couldn’t run FRAM tests because data is present 
 

Examples:  

T 

00 All tests OK. 

 

T 
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80 Unable to test FRAM when data is present. 

 

T 1 (verbose output enabled; in this example all possible errors are illustrated) 

Error in data line: 8 9 13 Error in address line: 3 4 Data mismatch at address 00000008 
Data mismatch at address 00000010 
FRAM test complete. 
07 FRAM connection error. Flash communication error. 
K 
 
 

t [<multiTrigEnable>] 

Command fields: 

multiTrigEnable: 1-byte hexadecimal value.  Whether to disable (if 0) or enable (any other value) 
multiple triggering. 

Response: <multiTrigEnable> (if command argument not given) or K 

Response fields: 

multiTrigEnable: 1-byte hexadecimal value.  Current value of the multi-trigger enable flag. 

Enables and disables multiple triggering. 

When multiple triggering (aka multi-trigger) is enabled, after the first set of data is taken, the 
recorder switches to mode ARM_AGAIN and waits for another trigger condition.  (Commands 
may be used at any time to redefine the conditions for triggering or the amount of data to be 
stored.) 

Each trigger causes the collection of the given number of pages in flash (set with command n) 
until power is lost, flash is full, command R is used, or command f is used while not recording. 

After the first trigger, FRAM is not written to; no other triggers have a fixed amount of pre-
trigger data, but because SRAM is used as a circular buffer while waiting for the next trigger, an 
average of ~100 records of pre-trigger data will be available for each subsequent trigger.  

This command does not modify nonvolatile memory.  To save any changes made to these 
settings, use command X. 

Examples:  

t 

00 (multi-trigger is disabled) 

 

t 1 (enable multi-trigger) 

K 

 
 



106  

U [<serialNumber>] 

Command fields: 

serialNumber: Decimal value.  From 0 to 999999999.  Unit’s serial number. 

Response: <serialNumber> (if command argument not given) or K 

Response fields: 

serialNumber: Decimal value.  Unit’s serial number. 

Read or write the serial number of the recorder. 

This has no effect on the unit’s operation; it’s simply for the purpose of telling different units 
apart.  The status command s and identity command w include this value in their outputs. 

Changes to this setting are immediately saved in nonvolatile memory. 

Examples:  

U 

16 

 

U 2001 

K 

 
 

u [<unitLabel>] 

Command fields: 

unitLabel: String, up to 32 bytes long.  Intended for unique identification of the unit. 

Response: <unitLabel> (if command argument not given) or K 

Response fields: 

unitLabel: String, up to 32 bytes long. 

Read or write the description string of the recorder. 

This has no effect on the unit’s operation; it’s simply for the purpose of telling different units 
apart.  The status command s and identity command w include this value in their outputs. 

The string is padded to 32 bytes with null bytes, which makes printing the full output of this 
command (as well as s, w, and z) more tricky.  Using printf("%s") will end the printing when the 
nulls start; one alternative is fwrite(), which can make sure that all the characters get printed.  
Since nothing follows the nulls on the response line, it’s actually okay to just use printf() for this 
command, but not for commands such as s. 

Changes to this setting are immediately saved in nonvolatile memory. 

Examples:  
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u 

AER‐006 Hangar Queen             

 

u Production Unit 15 

K 

 
 

V <boardSelect> <referenceSelect> [<voltageValue>] 

Command fields: 

boardSelect: 1-byte hexadecimal value.  From 1 to 3.  Each board handles 4 analog inputs and 2 
bilevel inputs. 

Board  Analog inputs  Bilevel inputs 

1  1‐4  1, 2 

2  5‐8  3, 4 

3  9‐12  5, 6 

referenceSelect: 1-byte hexadecimal value.  Either zero or nonzero.  If zero, refers to the 2.000V 
reference (internal bias); if nonzero, refers to the 2.222V reference (output bias). 

voltageValue: 2-byte hexadecimal value.  A value used by a DAC to generate the reference 
voltage selected by referenceSelect.  Ideally, the resulting voltage is 
(voltageValue/0x10000)*5V. 

Response: <voltageValue> (if command argument not given) or K 

Response fields: 

voltageValue: 2-byte hexadecimal value.  The value currently used by a DAC to generate the 
reference voltage selected by referenceSelect.  Ideally, the resulting voltage is 
(voltageValue/0x10000)*5V. 

Read or write the value being used by an analog board to generate a reference/bias voltage. 

See the analog board documentation for more details, but the short version is as follows:  The 
2.000V reference voltage provides a center point for the post-offset input, and the 2.222V 
reference voltage drives the final output filter. 

This command does not modify nonvolatile memory.  This setting will be reset to the saved value 
upon power cycle, but not when command R is issued.  To save a new value or revert to the 
saved value, use command X. 

Examples:  

V 2 0 

6666 (default 2 volt value) 
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V 3 1 71c7 (default 2.222 volt value) 

K 

 
 

v [<armOnPower‐upFlag> [<delaySeconds> <armString>]] 

Command fields: 

armOnPower‐upFlag: 1-byte hexadecimal value.  Either zero (do not arm on power-up) or 
nonzero (arm on power-up).  This value can be set without altering the other two stored values by 
including only this field in the command. 

delaySeconds: Decimal value.  From 0 to 999999999.  The number of seconds to delay arming. 

armString: String, up to 32 bytes long.  Intended as an identifier for the current test.  If more than 
32 characters are given, the extras will be dropped.  Can be left blank; the stored string will still 
be replaced by the new one, i.e. a blank.  Any character other than backspace or newline can be 
included in the string. 

Response: <armOnPower‐upFlag> <delaySeconds> <armString> (if no command arguments are 
given) or ! (if flash write access is blocked) or K 

Response fields: 

armOnPower‐upFlag: 1-byte hexadecimal value.  Either 00 (do not arm on power-up) or 01 (arm 
on power-up). 

delaySeconds: Decimal value.  The number of seconds to delay arming. 

armString: The string to be recorded as the arming string when the arm-on-power-up event 
actually happens.  

Reads and writes the recorder’s arm-on-power-up configuration.  These settings allow the 
recorder to automatically arm itself at some time after its power supply is enabled.  The effect is 
equivalent to a D command applied immediately upon power-up, using the delaySeconds and 
armString values stored by this command. 

When a power-up or reset happens, this is what occurs: 
1. If arm‐on‐power‐up is disabled, do nothing special; ignore the rest of this list 
2. Print a message describing what’s about to happen (failure to arm, immediate arm, or delayed 

arm) 
3. If flash write access is blocked, the arming attempt failed; ignore the rest of this list 

4. If this command’s delaySeconds is zero, arm immediately as in command A using the 
armString value from this command, and disable arm‐on‐power‐up to prevent a second 
automatic arming; ignore the rest of this list 

5. Enter Delay‐Arm mode as in command D using the delaySeconds and armString values from 
this command 

6. If Delay‐Arm mode finishes without interruption, disable arm‐on‐power‐up to prevent a second 

automatic arming, and block write access to flash (requires E to clear) 
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7. If Delay‐Arm mode is interrupted (e.g. with commands f, A, or D, or a loss of power), leave arm‐
on‐power‐up enabled for next time 

The write action of this command (i.e. using the command with any command arguments at all) 
will fail if write access to flash has been blocked by a previous command.  This prevents the user 
from setting up an arm-on-power-up that cannot be carried out. 

It’s possible to enable/disable arm-on-power-up without changing the stored delaySeconds and 
armString values by only including armOnPower‐upFlag in the command. 

An arm-on-power-up recording session will probably not include adjusting the configuration 
between power-up and arming, so be sure that the configuration saved in nonvolatile memory 
with command X is satisfactory before attempting arm-on-power-up recording. 

Changes to this setting are immediately saved in nonvolatile memory. 

Examples:  

v (read status) 

01 180 This is an arm string (arm-on-power-up enabled, delay for three minutes after power-
up) 

 

v 0 (disable arm-on-power-up, leave other settings alone) 

K 

 

v 1 (enable arm-on-power-up using existing settings) 

K 

 

v 1 86400 Test01 05Nov2016 07:12:56 (enable arm-on-power-up, delay for 24 hours after 
power-up) 

K 

 
 

W 

Command fields: none 

Response: <currentMode> 

Response fields: 

currentMode: A single character reflecting the current state of the recorder. 

Read the current mode of the unit – whether it’s armed, recording data, has recorded data, and so 
on.  See the “Submode” column of the table in the Operating Modes section to interpret this 
command’s response. 

Examples:  
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W 

U (User mode) 

 

W 

F (Arm-First mode) 

 
 

w 

Command fields: none 

Response: <identity> 

Response fields: 

identity:  A string containing the unit’s essential identity.  It consists of several sub-fields 
separated from each other by two spaces, each of which begins with one of the following: 

Subfield Header  Subfield Contents 

Unit label:  Unit’s label (as set by command u), padded to 32 bytes with \0 chars 

S/N:  Unit’s serial number (as set by command U) 

Version:  Version (“VER”) and compilation date (“COMP”) of the unit’s firmware 
 

Read the identity of the unit in a single string. 

The unit label is padded to 32 bytes with null bytes, which makes printing the full output of this 
command (as well as s and u) more tricky.  Using printf(“%s”) will end the printing when the 
nulls start; one alternative is fwrite(), which can make sure that all the characters get printed. 

Examples:  

w 

Unit label: AER‐006 Hangar Queen              S/N: 6  Version: VER_2005_Dec 21 
2015_COMP_Dec 21 2015 20:47:23 

 
 

X <saveConfiguration> 

Command fields: 

saveConfiguration: 1-byte hexadecimal value.  Either 0 (revert configuration from saved values) 
or nonzero (save current configuration to nonvolatile memory). 

Response: K 
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Response fields: none 

Save or revert the current configuration of the unit to the values stored in nonvolatile memory. 

Almost all commands that read or write a setting only read or write the temporary, stored-in-
RAM version of that setting; to save such a setting’s value for future use, this command must be 
used.  The temporary settings, not the saved settings, are the ones in effect, but they will reset to 
the saved versions on the next power-up or, for most settings, the next reset (command R). 

All settings that can be saved and reverted will be saved or reverted by this command.  This 
includes the settings stored on the analog boards. 

Because the saved values are loaded on power-up, they will most likely be the values used when 
doing arm-on-power-up recording, so be sure to test that the values loaded on power-up are the 
values you want to use. 

Examples:  

X 1 (Save current configuration) 

K  

 

X 0 (Revert to saved configuration) 

K 

 
 

Y <channel> [<offset>] 

Command fields: 

channel: 1-byte hexadecimal internal index of an analog channel, from 0 to 0xb (decimal 11).  
Channel indexes are explained in the Channel Indexing section. 

offset: 2-byte hexadecimal value.  The offset added to the analog input voltage prior to the 
application of gain.  Ideally, the offset voltage is (offset/0x10000)*5V. 

Response: <offset> (if command argument not given) or K 

Response fields: 

offset: 2-byte hexadecimal value.  The offset added to the analog input voltage prior to the 
application of gain.  Ideally, the offset voltage is (offset/0x10000)*5V. 

Read or write the offset value for analog inputs.  The offset value set with this command is 
passed directly to a DAC on the proper analog board. 

The intent is that the quiescent value of each analog input will be offset (using this command) to 
be equal to the 2.000V reference voltage for a particular analog board.  This will cause any 
deviation from that quiescent value to be amplified by a gain factor (set by command y).  The 
reference voltage is set using command V. 

This command does not modify nonvolatile memory.  This setting will be reset to the saved value 
upon power cycle, but not when command R is issued.  To save a new value or revert to the 
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saved value, use command X.  

Examples:  

Y 0 (read offset of analog input 6) 

6666 

 

Y 7 4099 (set offset of analog input 10) 

K 

 
 

y <channel> [<gain>] 

Command fields: 

channel: 1-byte hexadecimal internal index of an analog channel, from 0 to 0xb (decimal 11).  
Channel indexes are explained in the Channel Indexing section. 

gain: 1-byte hexadecimal value.  The gain factor applied to the input voltage after offset but 
before filtration and measurement.  Can be any of the following values: 1, 2, 4, 8, 0x10, 0x20, 
0x40, 0x80. 

Response: <offset> (if command argument not given) or K 

Response fields: 

gain: 1-byte hexadecimal value.  The gain factor applied to the input voltage after offset but 
before filtration and measurement. 

Read or write the gain factor for analog inputs. 

The gain factor value set with this command is applied after the offset value set with command 
Y.  This gain is applied to the difference between the post-offset channel input voltage and the 
analog board’s 2.000V reference voltage; in other words, if the post-offset input voltage is the 
same as the reference voltage, a higher gain won’t affect the output.  

This command does not modify nonvolatile memory.  This setting will be reset to the saved value 
upon power cycle, but not when command R is issued.  To save a new value or revert to the 
saved value, use command X. 

Examples:  

y 0 (read gain of analog input 6) 

01 

 

y 7 20 (set gain of analog input 10 to 0x20) 

K 
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Z <channel> [<threshold>] 

Command fields: 

channel: 1-byte hexadecimal index of a digital input, from c (decimal 12) to 11 (decimal 17).  
Channel indexes are explained in the Channel Indexing section. 

threshold: 2-byte hexadecimal value.  A value used by a DAC to generate the threshold voltage.  
Ideally, the resulting voltage is (threshold /0x10000)*5V.  Maximum value is 0xa8f5 (decimal 
43253), for a maximum voltage of 3.3V. 

Response: <threshold> (if command argument not given) or K 

Response fields: 

threshold: Current threshold value of the selected digital input.  Ideally, the threshold voltage is 
(threshold /0x10000)*5V. 

Read or write the threshold voltage of a digital input.  The digital channel value will be high if 
and only if the voltage on the channel’s input line exceeds the threshold voltage. 

The maximum allowed threshold voltage is 3.3 volts.  This is because the voltage runs to a 
comparator powered by a 3.3V supply; the comparator could be damaged if its inputs much 
exceed 3.3V.  (Each bilevel input signal is clamped by hardware to a range of 0V to 3.3V, so the 
input signals won’t damage the comparators either.) 

This command does not modify nonvolatile memory.  This setting will be reset to the saved value 
upon power cycle, but not when command R is issued.  To update the saved value or revert to the 
saved value, use command X. 

Examples:  

Z c 6789 (set threshold for digital input 1) 

K 

 

Z 11 (read threshold for digital input 6) 

5999 

 
 

z 

Command fields: none 

Response: <armString> 

Response fields: 

armString: String, up to 32 bytes long. 

Read the string set by the most recent successful arm operation.  This can be used to identify 
what the most recent test was all about. 
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The string is padded to 32 bytes with null bytes, which can make printing the full output of this 
command (as well as s, u, and w) more tricky.  Using printf(“%s”) will end the printing when the 
nulls start; one alternative is fwrite(), which can make sure that all the characters get printed.  
Since nothing follows the nulls on the response line, it’s actually okay to just use printf() for this 
command, but not for commands such as s. 

Examples:  

z 

Primary test 02Nov2016 10:17:33  

 
 

; [<Power‐downEnable>] 

Command fields: 

Power‐downEnable: 1-byte hexadecimal value.  Whether to disable (if 0) or enable (any other 
value) automatic power-down when recording is complete. 

Response: <Power‐downEnable> (if command argument not given) or K 

Response fields: 

Power‐downEnable: 1-byte hexadecimal value.  Current value of the flag controlling automatic 
power down. 

Enables and disables automatic power-down. 

If this flag is enabled, then the recorder will turn itself off when it reaches the Power-down 
mode.  This happens when the Recording mode records the pre-defined number of records (set 
by command n) with multi-trigger off (set by command t), or when the recorder completely fills 
the flash with recorded data. 

Changes to this setting are immediately saved in nonvolatile memory. 

Examples:  

; 

00 (automatic power-down is disabled) 

 

; 1 (enable automatic power-down) 

K 

 
 

~ [<heartbeatEnable>] 

Command fields: 

heartbeatEnable: 1-byte hexadecimal value.  Whether to disable (if 0) or enable (any other 
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value) the heartbeat signal output. 

Response: <heartbeatEnable> (if command argument not given) or K 

Response fields: 

heartbeatEnable: 1-byte hexadecimal value.  Current value of the heartbeat signal output enable 
flag. 

Enables and disables the heartbeat signal output. 

When enabled, the recorder generates a 1Hz square wave heartbeat signal.  It appears on the 
Heart_Sync_n line, which is recorded as part of each record.  Disabling the heartbeat signal 
allows the Heart_Sync_n line to be driven by an external source, providing a fiducial signal 
which is independent of trigger events.  This is particularly useful for a multi-unit system, in 
which a shared external fiducial provides synchronization of the recorded data on different units. 

In a pinch, with the heartbeat signal disabled, Heart_Sync_n could be used as an extra digital 
input. 

Changes to this setting are immediately saved in nonvolatile memory. 

Examples:  

~ 

00 (heartbeat output is disabled) 

 

~ 1 (enable heartbeat output) 

K 

 
 

+ [<unitAddress>] 

Command fields: 

unitAddress: 1-byte hexadecimal value.  The ASCII representation of the character to be used for 
the unit’s address.  For decimal digits, just add 0x30 to the digit.  A table of ASCII characters is 
available at www.asciitable.com and many other places. 

Response: <unitAddress> (if command argument not given) or K 

Response fields: 

unitAddress: 1-byte hexadecimal value.  The ASCII representation of the character to be used for 
the unit’s address. 

Sets the recorder’s address for serial communication. 

The value of unitAddress is an ASCII value.  As such, an argument of 2 will set the address 
character to an unprintable character.  If you want to use the character “2” as the recorder’s 
address, use the ASCII representation of the character “2”, which is 0x32; the argument to use 
for an address character of “2” is thus 32. 

The default value of unitAddress is 0xff.  This must be changed before the recorder can be used 
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in a multi-unit system, so that each unit can be individually communicated with.  To use this 
command on an unconfigured recorder, connect it to a serial interface with no other recorders 
connected, then use the broadcast address “0” to send this command to all connected recorders; 
since only one recorder is connected to the interface, only its unitAddress will be updated.  For 
example, to set a new recorder’s address to “1”, the complete command line to send would be 
“0+ 31”. 

Setting unitAddress to the value 0x00 will cause the recorder to always act as if its address 
character has already been received, thus treating the first character on each received line as a 
command character.  Getting the unit out of this state therefore requires a command line such as 
“+ 31”, with no initial address character. 

A few unitAddress values are invalid, and will cause this command to fail.  These values are 
0x30 (which is the broadcast address character “0”) and 0x08 (which is the backspace character). 

Changes to this setting are immediately saved in nonvolatile memory. 

Examples:  

+ 

34 (address character is ‘4’) 

 

+ 41 (set address character to ‘A’) 

K 

 
 

= 

Command fields: none 

Response: <goodPages> 

Response fields: 

goodPages: 4-byte hexadecimal value.  The number of functional pages in the flash chip. 

This command returns the maximum data capacity of a recorder. 

This can vary from unit to unit, as some recorders may have flash chips with bad blocks.  Any 
pages in a bad block cannot be safely used to store data, which reduces the amount of space 
available for recorded data.  This command interprets the bad block list to determine how many 
pages are left. 

The value of goodPages is the maximum argument to command n, which sets the number of 
pages to be recorded after a trigger. 

Examples:  

= 

00040000 (no bad blocks present) 
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= 

0003fe80 (3 bad blocks present) 

 
 

_ (underscore) 

Command fields: none 

Response: <firstEmptyPage> 

Response fields: 

firstEmptyPage: 4-byte hexadecimal value.  The address of the first empty page in flash. 

This command returns the amount of data currently recorded in flash. 

This command will only work if the unit is in USER mode, since the command requires exclusive 
control of flash.  In any other mode, the command will fail.  (Failure only happens if the unit is 
recording data, warming up, or waiting for a trigger, as the unit’s default state is USER mode.) 

The first empty page, by definition, is the address following the last recorded page.  Since page 
addressing starts at zero, the response from this command is identical to the number of pages that 
have been recorded. 

Any non-blank pages qualify as “recorded data”, so if data is recorded over existing data, the 
value returned by this command will be the greater of the two recording lengths.  (The 
overlapping parts of the data will be trashed, of course.) 

If command b was used to clear only some of flash, it’s possible that this command will be 
misled by uncleared data, as this command uses a binary search to find the first empty page.  
This is easily prevented by always clearing all of flash when using command b. 

Examples:  

_ 

00000400 (1024 pages of data have been recorded in flash) 

 

_ 

00040000 (262144 pages recorded – no bad blocks present, and all pages contain data) 

 

_ 

00000000 (no data has been recorded, flash is blank) 

 
 

‐ (hyphen) 

Command fields: none 
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Response: <badBlocks> (<blockIndex>)* 

Response fields: 

badBlocks: 1-byte hexadecimal value.  The number of blockIndex fields in the response. 

blockIndex: 2-byte hexadecimal value.  The index of a bad block in the flash chip.  The bad 
blocks are listed in ascending order. 

This command reveals which blocks in flash memory have been marked as bad. 

Under almost no circumstances will the user need to care about this information.  However, it is 
possible that blocks have been marked bad incorrectly; if this command returns sequences of 
blocks, this may be the case.  Incorrect bad-block marking is almost definitely present if block 0 
is marked bad, as the manufacturer of the flash chip guarantees that block to be good. 

Even if blocks have been incorrectly been marked bad, the only effect on recorder operation is 
that slightly less space will be available in flash for recorded data. 

Examples:  

‐ 

00 (no bad blocks present) 

 

‐ 

05 0013 001f 005e 0080 01a9 (5 bad blocks present) 

 
 

? 

Command fields: none 

Response: (command list is printed) 

Response fields: none 

This command prints a list of commands and enables input echo.  The intent of this command is 
to make life easier for a human operator. 

“Input echo” means that the unit will send back every character it receives, including the effects 
of backspace.  This makes the “local echo” setting on a terminal program unnecessary, as 
entered commands will be visible to the user.  However, broadcast commands will only be 
echoed if the computer is connected directly to the recorder, without a serial multiplexer being 
involved (see the Communicating with Recorders section for details); in this case, local echo 
may be preferable. 

The commands are listed with a brief description, the argument fields they take ([ARGS]), and the 
response fields they return ([RESP]). 

Examples:  
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? 

 

 1 ‐ serial‐read SRAM in ascii with checksum  [ARGS] x  [RESP] <4096 bytes of data> <4 
byte checksum> 

 2 ‐ serial‐read FRAM in ascii with checksum  [ARGS] <1 byte page address (0 to 0x7f)>  
[RESP] <4096 bytes of data> <4 byte checksum> 

... 

 ? ‐ print this help message and enable input echo 

 / ‐ disable input echo, for GUI‐compatible operation 

  Press a key:  
 
 

/ 

Command fields: none 

Response: Disabling input echo, for return to automated use. 

Response fields: none 

This command disables input echo, in which the recorder repeats back each character it receives. 

Input echo makes a human user’s life easier by letting them see what they’re typing, but a 
computer program will probably not expect to receive a copy of the command it just sent.  To 
prevent such response-parsing problems, this command should be sent when switching from 
human-controlled interaction to computer-controlled interaction. 

One option is to have a controlling program send this command when it starts, to ensure that the 
recorder is in the proper mode for automated control. 

Examples:  

/ 

Disabling input echo, for return to automated use.
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